|
[1] Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. Journal of Materials Processing Technology. 2005;167:283-93. [2] Zhang X, Xu S, Han G. Fabrication and photocatalytic activity of TiO2 nanofiber membrane. Materials Letters. 2009;63:1761-3. [3] Li Y, Gong J, He G, Deng Y. Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application. Materials Chemistry and Physics. 2011;129:477-82. [4] Thavasi V, Singh G, Ramakrishna S. Electrospun nanofibers in energy and environmental applications. Energy & Environmental Science. 2008;1:205-21. [5] Martina R, Subramanian S, Damian P, Seeram R, Michele M. Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles. Nanotechnology. 2008;19:285707. [6] Venkatachalam S, Hayashi H, Ebina T, Nanjo H. Preparation and Characterization of Nanostructured TiO2 Thin Films by Hydrothermal and Anodization Methods. 2013. [7] Sangkhaprom N, Supaphol P, Pavarajarn V. Fibrous zinc oxide prepared by combined electrospinning and solvothermal techniques. Ceramics International. 2010;36:357-63. [8] Wei Q, Li Q, Hou D, Yang Z, Gao W. Surface characterization of functional nanostructures sputtered on fiber substrates. Surface and Coatings Technology. 2006;201:1821-6. [9] Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials. 2004;16:1151-70. [10] Chacko DK, Madhavan AA, Arun TA, Thomas S, Anjusree GS, Deepak TG, et al. Ultrafine TiO2 nanofibers for photocatalysis. RSC Advances. 2013;3:24858-62. [11] Zhang J, Zhou P, Liu J, Yu J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics. 2014;16:20382-6. [12] Wetchakun N, Incessungvorn B, Wetchakun K, Phanichphant S. Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method. Materials Letters. 2012;82:195-8. [13] Jin C-Y, Zhu B-S, Wang X-F, Lu Q-H. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells. Chemical Research in Toxicology. 2008;21:1871-7. [14] Yang W-E, Hsu M-L, Lin M-C, Chen Z-H, Chen L-K, Huang H-H. Nano/submicron-scale TiO2 network on titanium surface for dental implant application. Journal of Alloys and Compounds. 2009;479:642-7. [15] Haddow DB, Kelly JM, James PF, Short RD, Scutt AM, Rawsterne R, et al. Cell response to sol-gel derived titania coatings. Journal of Materials Chemistry. 2000;10:2795-801. [16] Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research Part A. 2010;92A:1218-24. [17] Black J, Hastings G. Handbook of Biomaterial Properties: Chapman & Hall, London; 1998 [18] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667-81. [19] Wu S, Weng Z, Liu X, Yeung KWK, Chu PK. Functionalized TiO2 Based Nanomaterials for Biomedical Applications. Advanced Functional Materials. 2014;24:5464-81. [20] Sridhar R, Sundarrajan S, Venugopal JR, Ravichandran R, Ramakrishna S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. Journal of Biomaterials Science, Polymer Edition. 2012;24:365-85. [21] Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42:261-72. [22] Burger C, Hsiao BS, Chu B. Nanofibrous Materials and Their Applications. Annual Review of Materials Science. 2006;36:333-68. [23] Wu Y, Jia W, An Q, Liu Y, Chen J, Li G. Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications. Nanotechnology. 2009;20. [24] Yoon K, Hsiao BS, Chu B. Functional nanofibers for environmental applications. Journal of Materials Chemistry. 2008;18:5326-34. [25] Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer. 2007;48:3306-16. [26] Guner PT, Miko A, Schweinberger FF, Demirel AL. Self-assembled poly(2-ethyl-2-oxazoline) fibers in aqueous solutions. Polymer Chemistry. 2012;3:322-4. [27] Huang W, Wang M-J, Liu C-L, You J, Chen S-C, Wang Y-Z, et al. Phase separation in electrospun nanofibers controlled by crystallization induced self-assembly. Journal of Materials Chemistry A. 2014;2:8416-24. [28] Tao SL, Desai TA. Aligned Arrays of Biodegradable Poly(ε-caprolactone) Nanowires and Nanofibers by Template Synthesis. Nano Letters. 2007;7:1463-8. [29] Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. 2003;63:2223-53. [30] Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. Journal of Applied Polymer Science. 2005;96:557-69. [31] Perkgoz NK, Toru RS, Unal E, Sefunc MA, Tek S, Mutlugun E, et al. Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range. Applied Catalysis B: Environmental. 2011;105:77-85. [32] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216. [33] Sell SA, Bowlin GL. Creating small diameter bioresorbable vascular grafts through electrospinning. Journal of Materials Chemistry. 2008;18:260-3. [34] Lotus AF, Tacastacas SN, Pinti MJ, Britton LA, Stojilovic N, Ramsier RD, et al. Fabrication and characterization of TiO2–ZnO composite nanofibers. Physica E. 2011;43:857-61. [35] Li Z, Wang C. Effects of Working Parameters on Electrospinning. One-Dimensional nanostructures: Springer Berlin Heidelberg; 2013. p. 15-28. [36] Thompson CJ, Chase GG, Yarin AL, Reneker DH. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48:6913-22. [37] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances. 2010;28:325-47. [38] Wu H, Pan W, Lin D, Li H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J Adv Ceram. 2012;1:2-23. [39] Ramakrishna S, Fujihara K, Teo W-E, Lim T-C. An Introduction to Electrospinning and Nanofibers. Singapore: World Scientific; 2005. [40] Wang T, Kumar S. Electrospinning of polyacrylonitrile nanofibers. Journal of Applied Polymer Science. 2006;102:1023-9. [41] Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters. 2004;58:493-7. [42] Yang Q, Li Z, Hong Y, Zhao Y, Qiu S, Wang C, et al. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. Journal of Polymer Science Part B: Polymer Physics. 2004;42:3721-6. [43] Li D, McCann JT, Xia Y, Marquez M. Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes. Journal of the American Ceramic Society. 2006;89:1861-9. [44] Yuan X, Zhang Y, Dong C, Sheng J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International. 2004;53:1704-10. [45] Haridas AK, Sharma CS, Sritharan V, Rao TN. Fabrication and surface functionalization of electrospun polystyrene submicron fibers with controllable surface roughness. RSC Advances. 2014;4:12188-97. [46] Li Z, Wang C. Effects of Working Parameters on Electrospinning. One-Dimensional Nanostructures: SpringerBriefs in Materials; 2013. p. 15-28. [47] Son WK, Youk JH, Lee TS, Park WH. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer. 2004;45:2959-66. [48] Lee MW, An S, Latthe SS, Lee C, Hong S, Yoon SS. Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil. ACS Applied Materials & Interfaces. 2013;5:10597-604. [49] Lee KH, Kim HY, La YM, Lee DR, Sung NH. Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. Journal of Polymer Science Part B: Polymer Physics. 2002;40:2259-68. [50] Kamal K. Gupta, Akshay Kundan, Pradeep K. Mishra, Pradeep Srivastava, Sujata Mohanty, Narendra K. Singh, et al. Polycaprolactone composites with TiO2 for potential nanobiomaterials: tunable properties using different phases. Physical Chemistry Chemical Physics. 2012;14:12844-53. [51] Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials. 2006;27:596-606. [52] Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26:2527-36. [53] Li L, Jiang Z, Li M, Li R, Fang T. Hierarchically structured PMMA fibers fabricated by electrospinning. RSC Advances. 2014;4:52973-85. [54] Choi S-S, Lee S, Im S, Kim S, Joo Y. Silica nanofibers from electrospinning/sol-gel process. Journal of Materials Science Letters. 2003;22:891-3. [55] Azad AM, Noibi M, Ramachandran M. Fabrication and characterization of 1-D alumina (Al2O3) nanofibers in an electric field. Bulletin of the polish academy of sciences technical sciences. 2007;55:195-201. [56] Song X, Liu L. Characterization of electrospun ZnO–SnO2 nanofibers for ethanol sensor. Sensors and Actuators A: Physical. 2009;154:175-9. [57] Park S-J, Chase G, Jeong K-U, Kim H. Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor. Journal of Sol-Gel Science and Technology. 2010;54:188-94. [58] Li D, Xia Y. Fabrication of Titania Nanofibers by Electrospinning. Nano Letters. 2003;3:555-60. [59] Lee WS, Park Y-S, Cho Y-K. Significantly enhanced antibacterial activity of TiO2 nanofibers with hierarchical nanostructures and controlled crystallinity. Analyst. 2015;140:616-22. [60] He G, Cai Y, Zhao Y, Wang X, Lai C, Xi M, et al. Electrospun anatase-phase TiO2 nanofibers with different morphological structures and specific surface areas. Journal of Colloid and Interface Science. 2013;398:103-11. [61] Hashimoto K, Irie H, Fujishima A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics. 2005;44. [62] Doh S. J, Kim C, Lee SG, Lee SJ, Kim H. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. Journal of Hazardous Materials. 2008;154:118-27. [63] Gao H, Qiao B, Wang T-J, Wang D, Jin Y. Cerium Oxide Coating of Titanium Dioxide Pigment to Decrease Its Photocatalytic Activity. Industrial & Engineering Chemistry Research. 2013;53:189-97. [64] Fu G, Vary PS, Lin C-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. The Journal of Physical Chemistry B. 2005;109:8889-98. [65] Park J-A, Moon J, Lee S-J, Kim SH, Zyung T, Chu HY. Structural, electrical and gas sensing properties of eletrospun TiO2 nanofibers. Thin Solid Films. 2010;518:6642-5. [66] Grätzel M. Sol-Gel Processed TiO2 Films for Photovoltaic Applications. Journal of Sol-Gel Science and Technology. 2001;22:7-13. [67] Mondal K, Bhattacharyya S, Sharma A. Photocatalytic Degradation of Naphthalene by Electrospun Mesoporous Carbon-Doped Anatase TiO2 Nanofiber Mats. Industrial & Engineering Chemistry Research. 2014;53:18900-9. [68] Soo-Jin Park, Yong C. Kang, Ju Y. Park, Ed A. Evans, Rex D. Ramsier, Chase GG. Physical Characteristics of Titania Nanofibers Synthesized by Sol-Gel and Electrospinning Techniques. Journal of Engineered Fibers and Fabrics. 2010;5. [69] So W, Park S, Kim K, Shin C, Moon S. The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method. Journal of Materials Science. 2001;36:4299-305. [70] Li D, Haneda H, Hishita S, Ohashi N. Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization. Chemistry of Materials. 2005;17:2588-95. [71] Kim S-J, Lee EG, Park SD, Jeon CJ, Cho YH, Rhee CK, et al. Photocatalytic Effects of Rutile Phase TiO2 Ultrafine Powder with High Specific Surface Area Obtained by a Homogeneous Precipitation Process at Low Temperatures. Journal of Sol-Gel Science and Technology. 2001;22:63-74. [72] Brinker CJ, Scherer GW. Sol-Gel Science, The Physics and Chemistry of Sol-gel Processing. New York: Academic Press; 1990. [73] Hench LL, West JK. The sol-gel process. Chemical Reviews. 1990;90:33-72. [74] Charbonneau C, Gauvin R, Demopoulos GP. Nucleation and growth of self-assembled nanofibre-structured rutile (TiO2) particles via controlled forced hydrolysis of titanium tetrachloride solution. Journal of Crystal Growth. 2009;312:86-94. [75] Pongsorrarith V, Srisitthiratkul C, Laohhasurayotin K, Intasanta N. Solution- and air-recoverable photocatalytic nanofibers by facile and cost-effective electrospinning and co-precipitation processes. Materials Letters. 2012;67:1-4. [76] Yu J, Yu H, Cheng B, Zhao X, Zhang Q. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. Journal of Photochemistry and Photobiology A: Chemistry. 2006;182:121-7. [77] Joshi P, Zhang L, Davoux D, Zhu Z, Galipeau D, Fong H, et al. Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy & Environmental Science. 2010;3:1507-10. [78] Macwan DP, Dave PN, Chaturvedi S. A review on nano-TiO2 sol–gel type syntheses and its applications. Journal Mater Science. 2011;46:3669-86. [79] Katsuhiro O, Bin D, Yosuke T, Takayuki N, Michiyo Y, Shinichiro S, et al. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology. 2006;17:1026. [80] Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO2 Nanofibers. ACS Applied Materials & Interfaces. 2009;1:1140-3. [81] Meng X, Shin D-W, Yu SM, Jung JH, Kim HI, Lee HM, et al. Growth of hierarchical TiO2 nanostructures on anatase nanofibers and their application in photocatalytic activity. CrystEngComm. 2011;13:3021-9. [82] Kim I-D, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL. Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers. Nano Letters. 2006;6:2009-13. [83] Vu D, Li X, Li Z, Wang C. Phase-Structure Effects of Electrospun TiO2 Nanofiber Membranes on As(III) Adsorption. Journal of Chemical & Engineering Data. 2013;58:71-7. [84] Yan L, Si S, Chen Y, Yuan T, Fan H, Yao Y, et al. Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers and Polymers. 2011;12:207-13. [85] Su C, Hong BY, Tseng CM. Sol–gel preparation and photocatalysis of titanium dioxide. Catalysis Today. 2004;96:119-26. [86] Ranade MR, Navrotsky A, Zhang HZ, Banfield JF, Elder SH, Zaban A, et al. Energetics of nanocrystalline TiO2. Proceedings of the National Academy of Sciences. 2002;99:6476-81. [87] Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, Coss Rd, Oskam G. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology. 2008;19:145605. [88] Pottier A, Chaneac C, Tronc E, Mazerolles L, Jolivet J-P. Synthesis of brookite TiO nanoparticles by thermolysis of TiCl in strongly acidic aqueous media. Journal of Materials Chemistry. 2001;11:1116-21. [89] Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y. Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide. Journal of Materials Science. 1994;29:1617-22. [90] Beltrán A, Gracia L, Andrés J. Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs. The Journal of Physical Chemistry B. 2006;110:23417-23. [91] Huang X, Leal M, Li Q. Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes. Water Research. 2008;42:1142-50. [92] Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M. Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci Rep. 2014;4. [93] Hanaor DH, Sorrell C. Review of the anatase to rutile phase transformation. Journal of Materials Science. 2011;46:855-74. [94] Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale. 2014;6:1946-2008. [95] Landmann M, Rauls E, Schmidt WG. The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of Physics: Condensed Matter. 2012;24:195503. [96] Ghosh TB, Dhabal S, Datta AK. On crystallite size dependence of phase stability of nanocrystalline TiO2. Journal of Applied Physics. 2003;94:4577-82. [97] Zhang B, Wei F, Wu Q, Piao L, Liu M, Jin Z. The Formation and Evolution of the High Surface Energy Facets of Anatase TiO2. The Journal of Physical Chemistry C. 2015. [98] Xiong Z, Wu H, Zhang L, Gu Y, Zhao XS. Synthesis of TiO2 with controllable ratio of anatase to rutile. Journal of Materials Chemistry A. 2014;2:9291-7. [99] Mehranpour H, Askari M, Ghamsari MS. Nucleation and Growth of TiO2 Nanoparticles: InTech 2011. [100] Zhang J, Li M, Feng Z, Chen J, Li C. UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. The Journal of Physical Chemistry B. 2006;110:927-35. [101] Sugimoto T, Zhou X. Synthesis of Uniform Anatase TiO2 Nanoparticles by the Gel–Sol Method: Adsorption of OH− Ions to Ti(OH)4 Gel and TiO2 Particles. Journal of Colloid and Interface Science. 2002;252:347-53. [102] LaMer VK, Dinegar RH. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society. 1950;72:4847-54. [103] Fostad G, Hafell B, Frde A, Dittmann R, Sabetrasekh R, Will J, et al. Loadable TiO2 scaffolds—A correlation study between processing parameters, micro CT analysis and mechanical strength. Journal of the European Ceramic Society. 2009;29:2773-81. [104] Cannillo V, Chiellini F, Fabbri P, Sola A. Production of Bioglass® 45S5 – Polycaprolactone composite scaffolds via salt-leaching. Composite Structures. 2010;92:1823-32. [105] Oh S, Daraio C, Chen L-H, Pisanic TR, Fiñones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Journal of Biomedical Materials Research Part A. 2006;78A:97-103. [106] Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews. 2009;61:1033-42. [107] Arcos D, Vallet-Regí M. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia. 2010;6:2874-88. [108] Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, et al. Hybrid bone implants: Self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials. 2008;29:161-71. [109] Diez-Pascual AM, Diez-Vicente AL. Effect of TiO2 nanoparticles on the performance of polyphenylsulfone biomaterial for orthopaedic implants. Journal of Materials Chemistry B. 2014;2:7502-14. [110] Smith BS, Yoriya S, Grissom L, Grimes CA, Popat KC. Hemocompatibility of titania nanotube arrays. Journal of Biomedical Materials Research Part A. 2010;95A:350-60. [111] El-Hibri MJ. Polymers Containing Sulfur, Polysulfones. Kirk-Othmer Encyclopedia of Chemical Technology: John Wiley & Sons, Inc.; 2000. [112] Karpagavalli R, Zhou A, Chellamuthu P, Nguyen K. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V. Journal of Biomedical Materials Research Part A. 2007;83A:1087-95. [113] Thonemann B, Schmalz G, Hiller KA, Schweikl H. Responses of L929 mouse fibroblasts, primary and immortalized bovine dental papilla-derived cell lines to dental resin components. Dental Materials. 2002;18:318-23. [114] Brooke LF, Toby DB, Zee U, Dietmar WH, Paul DD, Tim RD. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5:025001. [115] Wong B, Teoh S-H, Kang L. Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Delivery and Translational Research. 2012;2:272-83. [116] Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee H-S, et al. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24:801-8. [117] Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. Journal of Immunological Methods. 1983;64:313-20. [118] Cullity BD, Stock SR. Elements of X-ray Diffraction. New Jersey: Prentice Hall, Inc.; 2001. [119] Gouadec G, Colomban P. Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progress in Crystal Growth and Characterization of Materials. 2007;53:1-56. [120] Hoogenboom R, Schlaad H. Bioinspired Poly(2-oxazoline)s. Polymers. 2011;3:467-88. [121] Coats AW, Redfern JP. Thermogravimetric analysis. A review. Analyst. 1963;88:906-24. [122] Llansola-Portoles MJ, Bergkamp JJ, Finkelstein-Shapiro D, Sherman BD, Kodis G, Dimitrijevic NM, et al. Controlling Surface Defects and Photophysics in TiO2 Nanoparticles. The Journal of Physical Chemistry A. 2014;118:10631-8. [123] Yan J, Wu G, Guan N, Li L, Li Z, Cao X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics. 2013;15:10978-88. [124] Patterson AL. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review. 1939;56:978-82. [125] Bornside DE, Macosko CW, Scriven LE. Spin coating: One‐dimensional model. Journal of Applied Physics. 1989;66:5185-93. [126] Glass JE. Water-Soluble Polymers: American Chemical Society; 1986. [127] Murphy-Ullrich JE. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? The Journal of Clinical Investigation. 2001;107:785-90. [128] Zhu L, Ye X, Tang G, Zhao N, Gong Y, Zhao Y, et al. Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. Journal of Biomedical Materials Research Part A. 2006;78A:515-22.
[1] Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. Journal of Materials Processing Technology. 2005;167:283-93. [2] Zhang X, Xu S, Han G. Fabrication and photocatalytic activity of TiO2 nanofiber membrane. Materials Letters. 2009;63:1761-3. [3] Li Y, Gong J, He G, Deng Y. Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application. Materials Chemistry and Physics. 2011;129:477-82. [4] Thavasi V, Singh G, Ramakrishna S. Electrospun nanofibers in energy and environmental applications. Energy & Environmental Science. 2008;1:205-21. [5] Martina R, Subramanian S, Damian P, Seeram R, Michele M. Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles. Nanotechnology. 2008;19:285707. [6] Venkatachalam S, Hayashi H, Ebina T, Nanjo H. Preparation and Characterization of Nanostructured TiO2 Thin Films by Hydrothermal and Anodization Methods. 2013. [7] Sangkhaprom N, Supaphol P, Pavarajarn V. Fibrous zinc oxide prepared by combined electrospinning and solvothermal techniques. Ceramics International. 2010;36:357-63. [8] Wei Q, Li Q, Hou D, Yang Z, Gao W. Surface characterization of functional nanostructures sputtered on fiber substrates. Surface and Coatings Technology. 2006;201:1821-6. [9] Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials. 2004;16:1151-70. [10] Chacko DK, Madhavan AA, Arun TA, Thomas S, Anjusree GS, Deepak TG, et al. Ultrafine TiO2 nanofibers for photocatalysis. RSC Advances. 2013;3:24858-62. [11] Zhang J, Zhou P, Liu J, Yu J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics. 2014;16:20382-6. [12] Wetchakun N, Incessungvorn B, Wetchakun K, Phanichphant S. Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method. Materials Letters. 2012;82:195-8. [13] Jin C-Y, Zhu B-S, Wang X-F, Lu Q-H. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells. Chemical Research in Toxicology. 2008;21:1871-7. [14] Yang W-E, Hsu M-L, Lin M-C, Chen Z-H, Chen L-K, Huang H-H. Nano/submicron-scale TiO2 network on titanium surface for dental implant application. Journal of Alloys and Compounds. 2009;479:642-7. [15] Haddow DB, Kelly JM, James PF, Short RD, Scutt AM, Rawsterne R, et al. Cell response to sol-gel derived titania coatings. Journal of Materials Chemistry. 2000;10:2795-801. [16] Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research Part A. 2010;92A:1218-24. [17] Black J, Hastings G. Handbook of Biomaterial Properties: Chapman & Hall, London; 1998 [18] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667-81. [19] Wu S, Weng Z, Liu X, Yeung KWK, Chu PK. Functionalized TiO2 Based Nanomaterials for Biomedical Applications. Advanced Functional Materials. 2014;24:5464-81. [20] Sridhar R, Sundarrajan S, Venugopal JR, Ravichandran R, Ramakrishna S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. Journal of Biomaterials Science, Polymer Edition. 2012;24:365-85. [21] Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42:261-72. [22] Burger C, Hsiao BS, Chu B. Nanofibrous Materials and Their Applications. Annual Review of Materials Science. 2006;36:333-68. [23] Wu Y, Jia W, An Q, Liu Y, Chen J, Li G. Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications. Nanotechnology. 2009;20. [24] Yoon K, Hsiao BS, Chu B. Functional nanofibers for environmental applications. Journal of Materials Chemistry. 2008;18:5326-34. [25] Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer. 2007;48:3306-16. [26] Guner PT, Miko A, Schweinberger FF, Demirel AL. Self-assembled poly(2-ethyl-2-oxazoline) fibers in aqueous solutions. Polymer Chemistry. 2012;3:322-4. [27] Huang W, Wang M-J, Liu C-L, You J, Chen S-C, Wang Y-Z, et al. Phase separation in electrospun nanofibers controlled by crystallization induced self-assembly. Journal of Materials Chemistry A. 2014;2:8416-24. [28] Tao SL, Desai TA. Aligned Arrays of Biodegradable Poly(ε-caprolactone) Nanowires and Nanofibers by Template Synthesis. Nano Letters. 2007;7:1463-8. [29] Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. 2003;63:2223-53. [30] Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. Journal of Applied Polymer Science. 2005;96:557-69. [31] Perkgoz NK, Toru RS, Unal E, Sefunc MA, Tek S, Mutlugun E, et al. Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range. Applied Catalysis B: Environmental. 2011;105:77-85. [32] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216. [33] Sell SA, Bowlin GL. Creating small diameter bioresorbable vascular grafts through electrospinning. Journal of Materials Chemistry. 2008;18:260-3. [34] Lotus AF, Tacastacas SN, Pinti MJ, Britton LA, Stojilovic N, Ramsier RD, et al. Fabrication and characterization of TiO2–ZnO composite nanofibers. Physica E. 2011;43:857-61. [35] Li Z, Wang C. Effects of Working Parameters on Electrospinning. One-Dimensional nanostructures: Springer Berlin Heidelberg; 2013. p. 15-28. [36] Thompson CJ, Chase GG, Yarin AL, Reneker DH. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48:6913-22. [37] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances. 2010;28:325-47. [38] Wu H, Pan W, Lin D, Li H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J Adv Ceram. 2012;1:2-23. [39] Ramakrishna S, Fujihara K, Teo W-E, Lim T-C. An Introduction to Electrospinning and Nanofibers. Singapore: World Scientific; 2005. [40] Wang T, Kumar S. Electrospinning of polyacrylonitrile nanofibers. Journal of Applied Polymer Science. 2006;102:1023-9. [41] Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters. 2004;58:493-7. [42] Yang Q, Li Z, Hong Y, Zhao Y, Qiu S, Wang C, et al. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. Journal of Polymer Science Part B: Polymer Physics. 2004;42:3721-6. [43] Li D, McCann JT, Xia Y, Marquez M. Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes. Journal of the American Ceramic Society. 2006;89:1861-9. [44] Yuan X, Zhang Y, Dong C, Sheng J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International. 2004;53:1704-10. [45] Haridas AK, Sharma CS, Sritharan V, Rao TN. Fabrication and surface functionalization of electrospun polystyrene submicron fibers with controllable surface roughness. RSC Advances. 2014;4:12188-97. [46] Li Z, Wang C. Effects of Working Parameters on Electrospinning. One-Dimensional Nanostructures: SpringerBriefs in Materials; 2013. p. 15-28. [47] Son WK, Youk JH, Lee TS, Park WH. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer. 2004;45:2959-66. [48] Lee MW, An S, Latthe SS, Lee C, Hong S, Yoon SS. Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil. ACS Applied Materials & Interfaces. 2013;5:10597-604. [49] Lee KH, Kim HY, La YM, Lee DR, Sung NH. Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. Journal of Polymer Science Part B: Polymer Physics. 2002;40:2259-68. [50] Kamal K. Gupta, Akshay Kundan, Pradeep K. Mishra, Pradeep Srivastava, Sujata Mohanty, Narendra K. Singh, et al. Polycaprolactone composites with TiO2 for potential nanobiomaterials: tunable properties using different phases. Physical Chemistry Chemical Physics. 2012;14:12844-53. [51] Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials. 2006;27:596-606. [52] Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26:2527-36. [53] Li L, Jiang Z, Li M, Li R, Fang T. Hierarchically structured PMMA fibers fabricated by electrospinning. RSC Advances. 2014;4:52973-85. [54] Choi S-S, Lee S, Im S, Kim S, Joo Y. Silica nanofibers from electrospinning/sol-gel process. Journal of Materials Science Letters. 2003;22:891-3. [55] Azad AM, Noibi M, Ramachandran M. Fabrication and characterization of 1-D alumina (Al2O3) nanofibers in an electric field. Bulletin of the polish academy of sciences technical sciences. 2007;55:195-201. [56] Song X, Liu L. Characterization of electrospun ZnO–SnO2 nanofibers for ethanol sensor. Sensors and Actuators A: Physical. 2009;154:175-9. [57] Park S-J, Chase G, Jeong K-U, Kim H. Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor. Journal of Sol-Gel Science and Technology. 2010;54:188-94. [58] Li D, Xia Y. Fabrication of Titania Nanofibers by Electrospinning. Nano Letters. 2003;3:555-60. [59] Lee WS, Park Y-S, Cho Y-K. Significantly enhanced antibacterial activity of TiO2 nanofibers with hierarchical nanostructures and controlled crystallinity. Analyst. 2015;140:616-22. [60] He G, Cai Y, Zhao Y, Wang X, Lai C, Xi M, et al. Electrospun anatase-phase TiO2 nanofibers with different morphological structures and specific surface areas. Journal of Colloid and Interface Science. 2013;398:103-11. [61] Hashimoto K, Irie H, Fujishima A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics. 2005;44. [62] Doh S. J, Kim C, Lee SG, Lee SJ, Kim H. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. Journal of Hazardous Materials. 2008;154:118-27. [63] Gao H, Qiao B, Wang T-J, Wang D, Jin Y. Cerium Oxide Coating of Titanium Dioxide Pigment to Decrease Its Photocatalytic Activity. Industrial & Engineering Chemistry Research. 2013;53:189-97. [64] Fu G, Vary PS, Lin C-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. The Journal of Physical Chemistry B. 2005;109:8889-98. [65] Park J-A, Moon J, Lee S-J, Kim SH, Zyung T, Chu HY. Structural, electrical and gas sensing properties of eletrospun TiO2 nanofibers. Thin Solid Films. 2010;518:6642-5. [66] Grätzel M. Sol-Gel Processed TiO2 Films for Photovoltaic Applications. Journal of Sol-Gel Science and Technology. 2001;22:7-13. [67] Mondal K, Bhattacharyya S, Sharma A. Photocatalytic Degradation of Naphthalene by Electrospun Mesoporous Carbon-Doped Anatase TiO2 Nanofiber Mats. Industrial & Engineering Chemistry Research. 2014;53:18900-9. [68] Soo-Jin Park, Yong C. Kang, Ju Y. Park, Ed A. Evans, Rex D. Ramsier, Chase GG. Physical Characteristics of Titania Nanofibers Synthesized by Sol-Gel and Electrospinning Techniques. Journal of Engineered Fibers and Fabrics. 2010;5. [69] So W, Park S, Kim K, Shin C, Moon S. The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method. Journal of Materials Science. 2001;36:4299-305. [70] Li D, Haneda H, Hishita S, Ohashi N. Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization. Chemistry of Materials. 2005;17:2588-95. [71] Kim S-J, Lee EG, Park SD, Jeon CJ, Cho YH, Rhee CK, et al. Photocatalytic Effects of Rutile Phase TiO2 Ultrafine Powder with High Specific Surface Area Obtained by a Homogeneous Precipitation Process at Low Temperatures. Journal of Sol-Gel Science and Technology. 2001;22:63-74. [72] Brinker CJ, Scherer GW. Sol-Gel Science, The Physics and Chemistry of Sol-gel Processing. New York: Academic Press; 1990. [73] Hench LL, West JK. The sol-gel process. Chemical Reviews. 1990;90:33-72. [74] Charbonneau C, Gauvin R, Demopoulos GP. Nucleation and growth of self-assembled nanofibre-structured rutile (TiO2) particles via controlled forced hydrolysis of titanium tetrachloride solution. Journal of Crystal Growth. 2009;312:86-94. [75] Pongsorrarith V, Srisitthiratkul C, Laohhasurayotin K, Intasanta N. Solution- and air-recoverable photocatalytic nanofibers by facile and cost-effective electrospinning and co-precipitation processes. Materials Letters. 2012;67:1-4. [76] Yu J, Yu H, Cheng B, Zhao X, Zhang Q. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. Journal of Photochemistry and Photobiology A: Chemistry. 2006;182:121-7. [77] Joshi P, Zhang L, Davoux D, Zhu Z, Galipeau D, Fong H, et al. Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy & Environmental Science. 2010;3:1507-10. [78] Macwan DP, Dave PN, Chaturvedi S. A review on nano-TiO2 sol–gel type syntheses and its applications. Journal Mater Science. 2011;46:3669-86. [79] Katsuhiro O, Bin D, Yosuke T, Takayuki N, Michiyo Y, Shinichiro S, et al. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology. 2006;17:1026. [80] Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO2 Nanofibers. ACS Applied Materials & Interfaces. 2009;1:1140-3. [81] Meng X, Shin D-W, Yu SM, Jung JH, Kim HI, Lee HM, et al. Growth of hierarchical TiO2 nanostructures on anatase nanofibers and their application in photocatalytic activity. CrystEngComm. 2011;13:3021-9. [82] Kim I-D, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL. Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers. Nano Letters. 2006;6:2009-13. [83] Vu D, Li X, Li Z, Wang C. Phase-Structure Effects of Electrospun TiO2 Nanofiber Membranes on As(III) Adsorption. Journal of Chemical & Engineering Data. 2013;58:71-7. [84] Yan L, Si S, Chen Y, Yuan T, Fan H, Yao Y, et al. Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers and Polymers. 2011;12:207-13. [85] Su C, Hong BY, Tseng CM. Sol–gel preparation and photocatalysis of titanium dioxide. Catalysis Today. 2004;96:119-26. [86] Ranade MR, Navrotsky A, Zhang HZ, Banfield JF, Elder SH, Zaban A, et al. Energetics of nanocrystalline TiO2. Proceedings of the National Academy of Sciences. 2002;99:6476-81. [87] Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, Coss Rd, Oskam G. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology. 2008;19:145605. [88] Pottier A, Chaneac C, Tronc E, Mazerolles L, Jolivet J-P. Synthesis of brookite TiO nanoparticles by thermolysis of TiCl in strongly acidic aqueous media. Journal of Materials Chemistry. 2001;11:1116-21. [89] Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y. Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide. Journal of Materials Science. 1994;29:1617-22. [90] Beltrán A, Gracia L, Andrés J. Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs. The Journal of Physical Chemistry B. 2006;110:23417-23. [91] Huang X, Leal M, Li Q. Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes. Water Research. 2008;42:1142-50. [92] Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M. Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci Rep. 2014;4. [93] Hanaor DH, Sorrell C. Review of the anatase to rutile phase transformation. Journal of Materials Science. 2011;46:855-74. [94] Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale. 2014;6:1946-2008. [95] Landmann M, Rauls E, Schmidt WG. The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of Physics: Condensed Matter. 2012;24:195503. [96] Ghosh TB, Dhabal S, Datta AK. On crystallite size dependence of phase stability of nanocrystalline TiO2. Journal of Applied Physics. 2003;94:4577-82. [97] Zhang B, Wei F, Wu Q, Piao L, Liu M, Jin Z. The Formation and Evolution of the High Surface Energy Facets of Anatase TiO2. The Journal of Physical Chemistry C. 2015. [98] Xiong Z, Wu H, Zhang L, Gu Y, Zhao XS. Synthesis of TiO2 with controllable ratio of anatase to rutile. Journal of Materials Chemistry A. 2014;2:9291-7. [99] Mehranpour H, Askari M, Ghamsari MS. Nucleation and Growth of TiO2 Nanoparticles: InTech 2011. [100] Zhang J, Li M, Feng Z, Chen J, Li C. UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. The Journal of Physical Chemistry B. 2006;110:927-35. [101] Sugimoto T, Zhou X. Synthesis of Uniform Anatase TiO2 Nanoparticles by the Gel–Sol Method: Adsorption of OH− Ions to Ti(OH)4 Gel and TiO2 Particles. Journal of Colloid and Interface Science. 2002;252:347-53. [102] LaMer VK, Dinegar RH. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society. 1950;72:4847-54. [103] Fostad G, Hafell B, Frde A, Dittmann R, Sabetrasekh R, Will J, et al. Loadable TiO2 scaffolds—A correlation study between processing parameters, micro CT analysis and mechanical strength. Journal of the European Ceramic Society. 2009;29:2773-81. [104] Cannillo V, Chiellini F, Fabbri P, Sola A. Production of Bioglass® 45S5 – Polycaprolactone composite scaffolds via salt-leaching. Composite Structures. 2010;92:1823-32. [105] Oh S, Daraio C, Chen L-H, Pisanic TR, Fiñones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Journal of Biomedical Materials Research Part A. 2006;78A:97-103. [106] Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews. 2009;61:1033-42. [107] Arcos D, Vallet-Regí M. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia. 2010;6:2874-88. [108] Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, et al. Hybrid bone implants: Self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials. 2008;29:161-71. [109] Diez-Pascual AM, Diez-Vicente AL. Effect of TiO2 nanoparticles on the performance of polyphenylsulfone biomaterial for orthopaedic implants. Journal of Materials Chemistry B. 2014;2:7502-14. [110] Smith BS, Yoriya S, Grissom L, Grimes CA, Popat KC. Hemocompatibility of titania nanotube arrays. Journal of Biomedical Materials Research Part A. 2010;95A:350-60. [111] El-Hibri MJ. Polymers Containing Sulfur, Polysulfones. Kirk-Othmer Encyclopedia of Chemical Technology: John Wiley & Sons, Inc.; 2000. [112] Karpagavalli R, Zhou A, Chellamuthu P, Nguyen K. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V. Journal of Biomedical Materials Research Part A. 2007;83A:1087-95. [113] Thonemann B, Schmalz G, Hiller KA, Schweikl H. Responses of L929 mouse fibroblasts, primary and immortalized bovine dental papilla-derived cell lines to dental resin components. Dental Materials. 2002;18:318-23. [114] Brooke LF, Toby DB, Zee U, Dietmar WH, Paul DD, Tim RD. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5:025001. [115] Wong B, Teoh S-H, Kang L. Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Delivery and Translational Research. 2012;2:272-83. [116] Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee H-S, et al. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24:801-8. [117] Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. Journal of Immunological Methods. 1983;64:313-20. [118] Cullity BD, Stock SR. Elements of X-ray Diffraction. New Jersey: Prentice Hall, Inc.; 2001. [119] Gouadec G, Colomban P. Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progress in Crystal Growth and Characterization of Materials. 2007;53:1-56. [120] Hoogenboom R, Schlaad H. Bioinspired Poly(2-oxazoline)s. Polymers. 2011;3:467-88. [121] Coats AW, Redfern JP. Thermogravimetric analysis. A review. Analyst. 1963;88:906-24. [122] Llansola-Portoles MJ, Bergkamp JJ, Finkelstein-Shapiro D, Sherman BD, Kodis G, Dimitrijevic NM, et al. Controlling Surface Defects and Photophysics in TiO2 Nanoparticles. The Journal of Physical Chemistry A. 2014;118:10631-8. [123] Yan J, Wu G, Guan N, Li L, Li Z, Cao X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics. 2013;15:10978-88. [124] Patterson AL. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review. 1939;56:978-82. [125] Bornside DE, Macosko CW, Scriven LE. Spin coating: One‐dimensional model. Journal of Applied Physics. 1989;66:5185-93. [126] Glass JE. Water-Soluble Polymers: American Chemical Society; 1986. [127] Murphy-Ullrich JE. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? The Journal of Clinical Investigation. 2001;107:785-90. [128] Zhu L, Ye X, Tang G, Zhao N, Gong Y, Zhao Y, et al. Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. Journal of Biomedical Materials Research Part A. 2006;78A:515-22.
|