|
[1]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, et al., A comprehensive review of ZnO materials and devices, Journal of Applied Physics, vol. 98, p. 041301, 2005. [2]S. Xu and Z. Wang, One-dimensional ZnO nanostructures: Solution growth and functional properties, Nano Research, vol. 4, pp. 1013-1098, 2011. [3]D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, et al., Emissive ZnO-graphene quantum dots for white-light-emitting diodes, Nat Nano, vol. 7, pp. 465-471, 2012. [4]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, et al., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nat Mater, vol. 4, pp. 42-46, 2005. [5]Q. Yang, W. Wang, S. Xu, and Z. L. Wang, Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect, Nano Letters, vol. 11, pp. 4012-4017, 2011. [6]S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang, Q. Yang, et al., Ordered Nanowire Array Blue/Near-UV Light Emitting Diodes, Advanced Materials, vol. 22, pp. 4749-4753, 2010. [7]T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, III-nitride blue and ultraviolet photonic crystal light emitting diodes, Applied Physics Letters, vol. 84, pp. 466-468, 2004. [8]J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, et al., Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency, Applied Physics Letters, vol. 90, p. 121108, 2007. [9]S. J. An, J. H. Chae, G.-C. Yi, and G. H. Park, Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays, Applied Physics Letters, vol. 92, p. 121108, 2008. [10]K. S. Kim, S.-M. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, Enhancement of Light Extraction Through the Wave-Guiding Effect of ZnO Sub-microrods in InGaN Blue Light-Emitting Diodes, Advanced Functional Materials, vol. 20, pp. 1076-1082, 2010. [11]X. W. Sun, B. Ling, J. L. Zhao, S. T. Tan, Y. Yang, Y. Q. Shen, et al., Ultraviolet emission from a ZnO rod homojunction light-emitting diode, Applied Physics Letters, vol. 95, p. 133124, 2009. [12]B. Xiang, P. Wang, X. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, et al., Rational Synthesis of p-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition, Nano Letters, vol. 7, pp. 323-328, 2007. [13]C. H. Park, S. B. Zhang, and S.-H. Wei, Origin of p-type doping difficulty in ZnO: The impurity perspective, Physical Review B, vol. 66, p. 073202, 2002. [14]E. Lai, W. Kim, and P. Yang, Vertical nanowire array-based light emitting diodes, Nano Research, vol. 1, pp. 123-128, 2008. [15]H. C. Chen, M. J. Chen, Y. H. Huang, W. C. Sun, W. C. Li, J. R. Yang, et al., White-Light Electroluminescence From n-ZnO/p-GaN Heterojunction Light-Emitting Diodes at Reverse Breakdown Bias, IEEE Transactions on Electron Devices, vol. 58, pp. 3970-3975, 2011. [16]J. Dai, C. X. Xu, and X. W. Sun, ZnO-Microrod/p-GaN Heterostructured Whispering-Gallery-Mode Microlaser Diodes, Advanced Materials, vol. 23, pp. 4115-4119, 2011. [17]A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications, Progress in Quantum Electronics, vol. 34, pp. 191-259, 2010. [18]Z. Lichun, L. Qingshan, S. Liang, Z. Zhongjun, H. Ruizhi, and Z. Fengzhou, Electroluminescence from n-ZnO : Ga/p-GaN heterojunction light-emitting diodes with different interfacial layers, Journal of Physics D: Applied Physics, vol. 45, p. 485103, 2012. [19]C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, et al., Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes, Applied Physics Letters, vol. 95, p. 223101, 2009. [20]M.-C. Jeong, B.-Y. Oh, M.-H. Ham, S.-W. Lee, and J.-M. Myoung, ZnO-Nanowire-Inserted GaN/ZnO Heterojunction Light-Emitting Diodes, Small, vol. 3, pp. 568-572, 2007. [21]X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film, Advanced Materials, vol. 21, pp. 2767-2770, 2009. [22]O. Lupan, T. Pauporté, and B. Viana, Low-Voltage UV-Electroluminescence from ZnO-Nanowire Array/p-GaN Light-Emitting Diodes, Advanced Materials, vol. 22, pp. 3298-3302, 2010. [23]W. I. Park and G. C. Yi, Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN, Advanced Materials, vol. 16, pp. 87-90, 2004. [24]A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, et al., GaN/ZnO nanorod light emitting diodes with different emission spectra, Nanotechnology, vol. 20, p. 445201, 2009. [25]M. Ding, D. Zhao, B. Yao, B. Zhao, and X. Xu, High brightness light emitting diode based on single ZnO microwire, Chemical Physics Letters, vol. 577, pp. 88-91, 2013. [26]G. Y. Zhu, C. X. Xu, Y. Lin, Z. L. Shi, J. T. Li, T. Ding, et al., Ultraviolet electroluminescence from horizontal ZnO microrods/GaN heterojunction light-emitting diode array, Applied Physics Letters, vol. 101, p. 041110, 2012. [27]X. Li, J. Qi, Q. Zhang, Q. Wang, F. Yi, Z. Wang, et al., Saturated blue-violet electroluminescence from single ZnO micro/nanowire and p-GaN film hybrid light-emitting diodes, Applied Physics Letters, vol. 102, p. 221103, 2013. [28]A. B. Djurišić and Y. H. Leung, Optical Properties of ZnO Nanostructures, Small, vol. 2, pp. 944-961, 2006. [29]C. F. Klingshirn, Semiconductor Optics, Springer, 2007. [30]M. Fox, Optical properties of solids, Oxford University Press, 2010. [31]X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang, and C. Yang, Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2, Physica B: Condensed Matter, vol. 388, pp. 145-152, 2007. [32]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, et al., Bound exciton and donor–acceptor pair recombinations in ZnO, physica status solidi (b), vol. 241, pp. 231-260, 2004. [33]H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, Annealing effect on the property of ultraviolet and green emissions of ZnO thin films, Journal of Applied Physics, vol. 95, pp. 1246-1250, 2004. [34]H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, and S. Y. Lee, Variation of light emitting properties of ZnO thin films depending on post-annealing temperature, Materials Science and Engineering: B, vol. 102, pp. 313-316, 2003. [35]B. Lin, Z. Fu, Y. Jia, and G. Liao, Defect Photoluminescence of Undoping ZnO Films and Its Dependence on Annealing Conditions, Journal of The Electrochemical Society, vol. 148, pp. G110-G113, 2001. [36]K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied Physics Letters, vol. 68, pp. 403-405, 1996. [37]E. G. Bylander, Surface effects on the low‐energy cathodoluminescence of zinc oxide, Journal of Applied Physics, vol. 49, pp. 1188-1195, 1978. [38]S. Chih-Tang, R. N. Noyce, and W. Shockley, Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics, Proceedings of the IRE, vol. 45, pp. 1228-1243, 1957. [39]K. C. S. Adel S. Sedra, Microelectronic Circuits, 2009. [40]D. A. Neamen, Semiconductor Physics and Devices:Basic Principles, 2011. [41]H. Z. Guo, F. Y. Lai, and S. Y. Guo, Principles and applications of light-emitting diode, 2012. [42]J. Schanda, Colorimetry: Understanding the CIE System, 2007. [43]A. P. Jephcoat, R. J. Hemley, H. K. Mao, R. E. Cohen, and M. J. Mehl, Raman spectroscopy and theoretical modeling of BeO at high pressure, Physical Review B, vol. 37, pp. 4727-4734, 1988. [44]C.-T. Chien, M.-C. Wu, C.-W. Chen, H.-H. Yang, J.-J. Wu, W.-F. Su, et al., Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod, Applied Physics Letters, vol. 92, p. 223102, 2008. [45]H.-C. Hsu, G.-M. Hsu, Y.-s. Lai, Z. C. Feng, S.-Y. Tseng, A. Lundskog, et al., Polarized and diameter-dependent Raman scattering from individual aluminum nitride nanowires: The antenna and cavity effects, Applied Physics Letters, vol. 101, p. 121902, 2012. [46]Q. Zhang, J. Qi, X. Li, F. Yi, Z. Wang, and Y. Zhang, Electrically pumped lasing from single ZnO micro/nanowire and poly(3,4-ethylenedioxythiophene):poly(styrenexulfonate) hybrid heterostructures, Applied Physics Letters, vol. 101, p. 043119, 2012. [47]U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, et al., Nature of the 2.8 eV photoluminescence band in Mg doped GaN, Applied Physics Letters, vol. 72, pp. 1326-1328, 1998. [48]Y. I. Alivov, Ü. Özgür, S. Dogˇan, C. Liu, Y. Moon, X. Gu, et al., Forward-current electroluminescence from GaN/ZnO double heterostructure diode, Solid-State Electronics, vol. 49, pp. 1693-1696, 2005. [49]Z. Shi, X. Xia, W. Yin, S. Zhang, H. Wang, J. Wang, et al., Dominant ultraviolet electroluminescence from p-ZnO:As/n-SiC(6H) heterojunction light-emitting diodes, Applied Physics Letters, vol. 100, p. 101112, 2012. [50]J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, et al., Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes, Applied Physics Letters, vol. 100, pp. -, 2012. [51]Z. L. Wang, Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics, Nano Today, vol. 5, pp. 540-552, 2010. [52]J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, et al., Electroluminescent and transport mechanisms of n-ZnO∕p-Si heterojunctions, Applied Physics Letters, vol. 88, p. 182112, 2006. [53]S. G. Zhang, X. W. Zhang, J. X. Wang, J. B. You, Z. G. Yin, J. J. Dong, et al., Enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes by hydrogen plasma treatment, physica status solidi (RRL) – Rapid Research Letters, vol. 5, pp. 74-76, 2011. [54]S. Makram-Ebeid and M. Lannoo, Quantum model for phonon-assisted tunnel ionization of deep levels in a semiconductor, Physical Review B, vol. 25, pp. 6406-6424, 1982. [55]E. O. KANE, Theory of tunneling, Journal of Applied Physics, vol. 32, pp. 83-91, 1961. [56]Z. Shi, Y. Zhang, X. Cui, B. Wu, S. Zhuang, F. Yang, et al., Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction, Applied Physics Letters, vol. 104, p. 131109, 2014.
|