跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳淑
研究生(外文):Shur-Shyen Wu
論文名稱:某一衛生掩埋場附近地下水中重金屬濃度分布之研究
論文名稱(外文):The investigation of concentration distribution of heavy metals in groundwater nearby a sanitary landfill
指導教授:張火炎張火炎引用關係
指導教授(外文):Ho-Yuan Fred. Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:107
中文關鍵詞:重金屬地下水滲出水時程地下水脈上下游潮汐組合採樣可溶性有機碳
外文關鍵詞:heavy metalsgroundwaterleachatedurationup/downstreamsea tidecomposite samplingDOC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
根據過去文獻發現水中的DOC濃度會影響重金屬的游移能力,DOC會與重金屬結合形成錯合物,而使得於環境介質中移動能力提高,故本研究嘗試以DOC濃度探討滲出水與地下水中重金屬濃度之相關。掩埋期程會影響廢棄物之生化反應之階段,進而造成不同重金屬釋出量的改變。本研究藉由測量不同期程之掩埋場中地下水中重金屬濃度,以探討掩埋場不同期程對地下水中重金屬濃度的影響。另有文獻發現掩埋場中水脈上下游二氯甲烷濃度有明顯差異,但過去未有研究討論水脈上下游對地下水中重金屬濃度之影響,本研究欲探討重金屬是否會隨地下水脈的上下游造成濃度的改變。台灣地區因地狹人稠,有甚高比例之掩埋場位於人口密度較少的海邊河邊,本研究擬對潮汐影響掩埋場附近地下水重金屬進行探討。因此本研究之研究目的為︰1.了解可溶性有機碳濃度是否在尋求滲出水與地下水相關中為一重要的參考校正因子。2.瞭解都市型掩埋場不同期程對地下水中重金屬濃度之影響。3.瞭解地下水脈上下游對地下水中重金屬濃度之影響。4.確定掩埋場附近地下水中重金屬濃度在同一天不同時間採樣測量結果是否有如季節性的變化。5.探討潮汐是否與地下水中重金屬濃度短時間顯著差異有關。
本研究之採樣以組合採樣方式進行採樣,重金屬以石墨爐原子吸收光譜儀、火焰式原子吸收光譜儀及感應離子耦合電漿質譜儀進行量測。本研究發現︰(1)滲出水與地下水重金屬濃度有高度相關且經可溶性有機碳濃度校正後,兩者之相關係數明顯上升,水體中可溶性有機碳濃度可能會對水中重金屬的移動分佈情形產生影響。(2)在期程方面發現零期的掩埋場區之重金屬濃度較二期變異較小,表示其生化反應階段已漸趨穩定,重金屬鉛、鉻、鋁、鎳、汞濃度為零期大於二期場區,而重金屬鋅、錳、砷、銅則是二期濃度大於零期場區,顯示掩埋場之掩埋期程的確對水體中重金屬濃度產生影響。(3)在地下水水脈上下游方面發現重金屬鋅、銅為下游濃度較上游高,重金屬鉛、鉻、砷為上游較下游高,其中重金屬鋅下游較上游高可能是因為可溶性有機碳對其移動能力影響所造成,至於各重金屬沒有一致結果。(4)本研究發現同一採樣點地下水中重金屬濃度一天之內變化差異可達數十倍之多。本研究嘗試由潮汐變化進行探討,但結果並無法支持潮汐變化影響地下水體重金屬濃度之變化,但由於經費、人力時間等不足,無法掌握潮汐細微的變化,所以無法或至確切結論,並不排除其他因素干擾影響。未來建議在政策應用上︰(1)針對掩埋場的滲出水收集系統設計不良及不透水布設計與監測進行進一步探討,以避免掩埋場中之滲出水污染;(2)由於同一採樣點同一天不同時間採樣期濃度可差異數十倍以上,建議環保人員對環境檢測部份爾後之環境水樣,應採取不同時間點之多次採樣,來對污染程度作一正確的評估。

Abstract
The finding in literature that the concentrations of dissolved organic carbons (DOCs) affect the mobility of heavy metals in aqueous milieu motivate one of the purposes in this study : the effect of DOCs on the relationship between the concentrations of leachate and groundwater. This study also aimed to investigate whether the duration after waste deposit affects the heavy metals in the groundwater nearby a sanitary landfill. Another interest of this study is to determine whether the heavy metal concentrations of groundwater will be affected by the location site of groundwater well corresponding to the up/downstream in the underground stream. In this study, we also tried to find out whether the sea tide affects the heavy metal concentrations of groundwater. Using composite sampling, groundwater samples were collected in August, September, January, and June. Heavy metals were analyzed by ICP-MS/GFAAS. It was found that 1). Significant association were found between leachate and groundwater for some heavy metals. After adjusting DOCs, the associations became more significant for some heavy metals. 2). The variation of heavy metal distributions for the samples collected in the zero-stage dump site were found to be much less than those in the second-stage dump site. 3). Zinc and copper concentrations in the samples located in the lower underground stream were found to be higher than those from the upper ones. Whereas the lead, chromium, and arsenic distribution showed the opposite trends. 4). The differences of heavy metals could be larger than 10 folds among the groundwater samples collected from the identical well site at different time within a day. This discrepancy is not able to be justified by sea tide. This study suggests further studies on the more clear-cut duration landfill, samples collected from the farmost up- and downstream of underground stream, and the collaboration with the experts in hydrology and oceanics, to elaborate the duration effect, up/downstream effect, and tidal effect, respectively. This study also suggests that 1). the re-examination of the design of leachate collection system and continuous monitoring on the groundwater to assure the pollution generated from the sanitary landfill has been fully controlled; 2). conducting long-term health surveillance on the waste collectors and operators; 3). Composite sampling will be more representative and accurate compared with the single or grab sampling in terms of environmental monitoring on water samples.

目錄
頁數
中文摘要--------------------------------------------------------------- II
英文摘要--------------------------------------------------------------- V
誌謝--------------------------------------------------------------------- VII
目錄--------------------------------------------------------------------- VIII
表目錄------------------------------------------------------------------ XI
圖目錄------------------------------------------------------------------ XII
附表目錄--------------------------------------------------------------- XIV
附圖目錄--------------------------------------------------------------- XV
附錄目錄--------------------------------------------------------------- XV
第一章 緒論----------------------------------------------------------- 1
1.1 研究緣起---------------------------------------------------------- 1
1.2研究目的----------------------------------------------------------- 3
第二章 文獻回顧----------------------------------------------------- 4
2.1掩埋場造成之環境公害---------------------------------------- 4
2.2掩埋場造成之健康危害---------------------------------------- 5
2.3滲出水之成因、特性及排出--------------------------------- 12
2.4掩埋場內廢棄物之生化反應期------------------------------ 13
2.5地下水脈上下游之影響---------------------------------------- 14
2.6 DOC與重金屬之相關------------------------------------------ 15
2.7水樣收集之標準方法------------------------------------------- 15
第三章 研究方法及進行步驟------------------------------------- 17
3.1研究設計----------------------------------------------------------- 17
3.1.1掩埋場簡介----------------------------------------------------- 18
3.1.2期程之影響----------------------------------------------------- 19
3.1.3地下水脈上下游之影響------------------------------------- 20
3.1.4潮汐之影響----------------------------------------------------- 20
3.2採樣方法----------------------------------------------------------- 21
3.3前處理方法-------------------------------------------------------- 23
3.4分析方法----------------------------------------------------------- 24
3.4.1原子吸收光譜儀的原理及構造---------------------------- 24
3.4.2感應耦合電漿質譜儀分析法簡介------------------------- 27
3.5材料與方法-------------------------------------------------------- 28
3.5.1材料--------------------------------------------------------------- 28
3.5.2藥品--------------------------------------------------------------- 29
3.5.3設備--------------------------------------------------------------- 30
3.6品保品-------------------------------------------------------------- 30
第四章 結果與討論------------------------------------------------- 33
4.1結果----------------------------------------------------------------- 33
4.1.1抽水前後比較-------------------------------------------------- 33
4.1.2重金屬濃度分佈情形---------------------------------------- 33
4.1.3與其他研究及現行法規的比較--------------------------- 36
4.1.4滲出水與地下水之相關------------------------------------- 37
4.1.5期程之影響----------------------------------------------------- 38
4.1.6地下水脈上下游之影響------------------------------------- 40
4.1.7一天之內地下水之重金屬濃度變化情形--------------- 42
4.1.8潮汐之影響----------------------------------------------------- 43
4.2討論----------------------------------------------------------------- 44
4.3結論----------------------------------------------------------------- 48
4.4建議----------------------------------------------------------------- 51
4.4.1未來研究方向--------------------------------------------------- 51
4.4.2政策應用方面--------------------------------------------------- 51
參考文獻---------------------------------------------------------------- 53
表目錄︰
表一 地下水中重金屬濃度八月採樣分析結果--------------- 59
表二 地下水中重金屬濃度九月採樣分析結果--------------- 60
表三 滲出水中重金屬濃度一月採樣分析結果--------------- 61
表四 地下水中重金屬濃度一月採樣分析結果--------------- 62
表五 滲出水中重金屬濃度六月採樣分析結果--------------- 64
表六 地下水中重金屬濃度六月採樣分析結果--------------- 65
表七 滲出水與地下水經DOC校正前後方程式及R2
值一覽表--------------------------------------------------------- 66
表八 零期與二期之地下水中重金屬濃度CV%一覽表----- 67
表九 潮汐水位量測調查表----------------------------------------- 67
表十 靠內陸較近之地下水井W5抽水前後濃度比較-------- 68
表十一 靠海邊較近之地下水井W12抽水前後濃度比較--- 68
圖目錄︰
圖一 滲出水與地下水各重金屬濃度相關圖------------------- 69
圖二 滲出水與地下水各重金屬濃度經DOC校正後之相關圖 70
圖三 八月份地下水中重金屬濃度經DOC校正前後在期程之
分佈情形------------------------------------------------------------ 71
圖四 九月份地下水中重金屬濃度經DOC校正前後在期程之
分佈情形------------------------------------------------------------ 72
圖五 一月份地下水中重金屬濃度經DOC校正前在期程之分
佈情形--------------------------------------------------------------- 73
圖六 一月份地下水中重金屬濃度經DOC校正後在期程之分
佈情形--------------------------------------------------------------- 74
圖七 六月份地下水中重金屬濃度經DOC校正前在期程之分
佈情形--------------------------------------------------------------- 75
圖八 八月份地下水重金屬濃度經DOC校正前後在水脈上下
游之分佈情形------------------------------------------------------ 76
圖九 九月份地下水重金屬濃度經DOC校正前後在水脈上下
游之分佈情形------------------------------------------------------ 78
圖十 一月份地下水重金屬濃度經DOC校正前後在水脈上下
游之分佈情形------------------------------------------------------ 80
圖十一 六月份地下水重金屬濃度經DOC校正前在水脈上下
游之分佈情形------------------------------------------------------ 81
圖十二 八月份地下水重金屬濃度經潮汐時間差校正前在潮汐
因子下之分佈情形------------------------------------------------ 82
圖十三 八月份地下水重金屬濃度經潮汐時間差校正後在潮汐
因子下之分佈情形------------------------------------------------ 84
圖十四 九月份地下水重金屬濃度經潮汐時間差校正後在潮汐
因子下之分佈情形------------------------------------------------- 86
圖十五 一月份地下水重金屬濃度經潮汐時間差校正後在潮汐
因子下之分佈情形------------------------------------------------- 88
圖十六 一月份地下水重金屬濃度經潮汐時間差校正後在潮汐
因子下之分佈情形------------------------------------------------- 89
圖十七 一月份地下水重金屬濃度經潮汐時間差校正後在潮汐
因子下之分佈情形------------------------------------------------- 90
圖十八 一月份地下水重金屬濃度經潮汐時間差校正後在潮汐
因子下之分佈情形------------------------------------------------- 91
圖十九 本研究掩埋場各採樣點位置平面圖--------------------- 92
附表目錄:
附表一 掩埋場滲出水之化學物質與濃度範圍---------------- 93
附表二 掩埋場滲出水之重金屬濃度範圍一覽表------------- 94
附表三 掩埋場中五個階段生化反應期之特性---------------- 95
附表四 台南某一掩埋場中各地下水井不同季節濃度差異
一覽表--------------------------------------------------------------- 96
附表五 八七年八月、九月及八八年一月的氣象局潮汐預
報資料-------------------------------------------------------------- 97
附表六 過去濃度資料與本研究檢量線範圍之比較--------- 98
附圖目錄:
附圖一 廢棄物掩埋場之穩定化過程及各階段產氣之組成 99
附圖二 本研究之掩埋場86年8月地下水等水位圖及立體圖 100
附圖三 本研究之掩埋場86年9月地下水等水位圖及立體圖 101
附圖四 本研究之掩埋場87年1月地下水等水位圖及立體圖 102
附圖五 台南站1998年8月日雨量及日均溫之變化圖--------- 103
附圖六 台南站1998年9月日雨量及日均溫之變化圖--------- 103
附圖七 台南站1999年1月日雨量及日均溫之變化圖--------- 103
附圖八 台南站1999年5月日雨量及日均溫之變化圖--------- 104
附圖九 台南站1999年6月日雨量及日均溫之變化圖--------- 104
附錄目錄︰
附錄一 石墨爐原子吸收光譜儀重金屬鉛之分析條件--------- 105
附錄二 石墨爐原子吸收光譜儀重金屬錳之分析條件--------- 105
附錄三 石墨爐原子吸收光譜儀重金屬銅之分析條件--------- 106
附錄四 石墨爐原子吸收光譜儀重金屬鉻之分析條件--------- 106
附錄五 感應離子偶合電漿質譜儀(ICP-MS)儀之分析條件---- 107

參考文獻
行政院環保署網站資料,http://www.epa.gov.tw/。
張祖恩,林財富。民國87年。台南縣市南沙崙區域性掩埋場、城西衛生掩埋場及焚化廠觀測井水質檢驗與土壤分析之調查研究。台南市政府。國立成功大學環境工程學系研究報告第一八五號。
Amdur, M.O. Casarett and Doull's Toxicology. The Basic Science of Posisons Fourth Edition, 1991:623-680.
American Conference of Governmental Industrial Hygienists(ACGIH) (1986) Documentation of the threshold limit values and biological exposure limits, 5th ed. ACGIH, Cincinnati.
Bagchi, A. (1989) Design, Construction, and Monitoring of Sanitary Landfill. New York: John Wiley & Sons, Inc.
Barlaz, M.A. Schaefer, D.M. and Ham, R.K. (1989) Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Application Environmental Microbiology., 55, 55-65.
Christensen, J.B. Jensen, D.L. Gron, C. Filip, Z. and Christensen, T.H. (1998) Characterization of the Dissolved Organic Carbon in Landfill Leachate-Polluted Groundwater. Water Research., 32, 125-135.
Christensen, J.B. Jensen, D.L. and Christensen, T.H. (1996) Effect of dissolved organic carbon on the mobility of cadmium, nickel and zinc in leachate polluted groundwater. Water Research., 30, 3037-3049.
Deloraine, A. Zmirou, D. Tillier, C. Boucharlat, A. and Bouti, H. (1995) Case-Control Assessment of the Short-Term Health Effects of an Industrial Toxic Waste Landfill. Environmental Research. 68, 124-132.
DHEW.︰(1977) Occupational Dissease: Aguide to Their Recognition. U.S. Department of Health, Education and Welfare, Publication No. 77-811. Washington, D.C. 305.
Doll, R. Mathews J.D. and Morgan L.G. (1977) Cancers of the lung and nasal sinuses in nickel workers: reassessment of the period of risk. British Journal of Industry Medicine., 34, 102-106.
Ehrig, H.J. (1983) Quality and quantity of sanitary landfill leachate. Waste Mangement Research. 1, 54-68.
Ehrig, H.J. (1988) Water and element balances in landfills. In Lecture Notes in Earth Sciences, (P. Baccini, ed.), Berlin: Springer-Verlag. 83-115.
Ehrig, H.J. (1989) Leachate quality. In sanitary landfilling: Process, Technology and Environment Impact, et. T. Christensen, R. Cossu & R. Stegmann. Academic Press, London. 213-229.
Emberton, J.R. and Parker, A. (1987) The problems associated with building on landfill sites. Water Management & Research, 5, 473-482.
EPA: (1987) Special Report on Ingested Inorganic Arsenic: Skin Cancer and Nutritional Essentiality. Risk Assessment Form. U.S. Environmental Protection Agency, Washington, D.C.
EPA: (1989) Supplement to the 1986 EPA Air Quality Criteria for Lead, Vol.1, Addendum EPA/600/8-89/049A. Office of Health and Environmental Protection Agency, Washington, D.C. A1-A67.
Fluharty, A.L. and Sanadi, D.R. (1961) On the mechanism of oxidative phosphorylation. II. Effect of arsenite alone and in combination with 2,3-dimercaptopropanol. Journal of Biological Chemistry. 236, 2772-2778.
Friberg, L. Elinder, C.G. Kjellstrom, T. and Nordberg, G. (1986) Cadmium and Health. A Toxicological and Epidemiological Appraisal, vol1,General Aspects; vol2, Effects and Response. CRC Press, Inc., Boca Raton, Fla.
Garruto, R.M. et al. (1984) Imaging of calcium and aluminum in neurofibrillary tangle-bearing neurons in parkinsonism-dementia of Guam. Proc. Natl. Acad. Science. USA. 81, 1875-1879.
Halvadakis, C.P. (1983) Methogenesis in solid-waste landfill bioreactors. Ph.D. Dissertation, Stanford University, Stanford, California.
Harmsen, J. (1983) Identification of organic compounds in leachate from a waste tip. Water Research. 17, 699-705.
Harris, J.M. and Gaspar, J.A. (1989) Management of leachate from sanitary landfills. Environmental Engineering, Conference Proceedings, (J.F. Malina, ed.), ASCE. 320-333.
Henschler, D. (ed) (1992) Gesundheitsschadeliche Arbeitsstoffe, MAK-Werte. VCH, Weinhein
IARC︰(1987) Monograph on the Evaluations of Carcinogenicity: An Update of IARC Monographs, Vols 1-42, Suppl. 7. World Health Organization, International Agency for Research on Cancer, Lyon, France.
Johnson, C.A. Richner, G.A. Vitvar, T. Schittli, Nina and Eberhard, M. (1998) Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash Part I: The hydrology of landfill lostorf, Switzerland. Journal of Contaminant Hydrology, 33, 361-376.
Kamita, O.Y. (1984) Study of odorous compounds produced by putrefaction of foods V. Fatty acids, sulfur compounds and amines. Journal of chromatography A 292 : 383-391.
Kerfoot, H.B. (1994) Landfill gas effects on groundwater samples at a municipal solid waste facility. Journal of Air & Waste Management Association. 44, 1293-1298.
Klatzo, I. Wisniewski, H. and Streicher, E. (1965) Experimental production of neurofibrillary degenerations I. Light microscopic observations. J. Neuropathol. Exp. Neurol. 24, 187-199.
Langard, S. and Norseth, T. Chromium. In Friberg, L.; Nordberg, G.F.; and Vouk, V.B. (1986) Handbook on Toxicology of Metals, vol2,2nd ed., Specific Metals. Elsevier Scientific, Amsterdam. 185-210.
Mantoura, R.F.C. Dickson, A. and Riley, J.P. (1978) The complexation of metals with humic materials in natural water. Estuarine Coastal Marine Science. 6, 387-408.
Mutasem, E.F. Angelos, N.F. and James, O.L. (1997) Environmental Impacts of Solid Waste Landfilling. Journal of Environmental Management., 50, 1-25.
Oman, C. and Hynning, P.A. (1993) Identification of Organic Compounds in Municipal Landfill Leachates. Environmental Pollution. 80, 265-271.
Pedersen, E. Anderson, A. and Hogetveit, A. (1978) A second study of the incidence and mortality of cancer of respiratory organs among workers at a nickel refinery. Annual Clinical Laboratory Science, 8, 503-510.
Pohland, F.G. and Harper, S.R. (1986) Critical review and summary of leachate nd gas production from landfills. US EPA Technical Report, Hazardous Waste Engineering Research Laboratory, Cincinnati, Ohio, NTIS PB86-240 181.
Poulsen, O.M. Breum, N.O. Ebbehoj, N. Hansen, A.M. Ivens, U.I. Lelieveld, D.V. Malmros, P. Matthiasen, L. Nielsen, B.H. Nielsen, E.M. Schibye, B. Skov, T. Stenbaek, E.I. and Wilkins, C.K. (1995) Collection of Domestic Waste. Review of Occupational Health Problems and Their Possible Causes. The Science of the Total Environment. 170, 1-19.
Rand, M.C. Greenberg, A.E. Taras, M.J., Standard Methods For the Examination of Water and Wastewater: 105 Collection and Preservation of Samples. 14th USA: American Public Health Association 1015 Eighteenth Street NW Washington, DC 20036,1975: 38-45
Robinson, W.D. (1986) The solid waste handbook. New York: Wiley & Sons, Inc.
Rufener, P.C. Bahy, M. and Rey, P. (1975) Bronchite chronique et facteurs de risque chez les employes de la voirie a Geneve-Etudes et Recherches. Unite de Med. Du Travail, 5.
Rutter, M. and Jones, R.R. (1983) Lead versus Health Sources and Effects of Low Level Lead Exposure. John Wiley & Sons, New York.
Santodonato, J. (1985) Monograph on human exposure to chemicals in the workplace: mercaptans. Report No. SRC-TR-85-187, Center for Chemical Hazard Assessment, Syracuse Research Corp., Syracuse.
Smith, B. Higgo, J.J.W. Moody, P. Davis, J.R. Williams, G.M. and Warwick, P. (1991) Comparative study of humic substances in groundwater: 1. The extraction of humic material from Drigg groundwater and a study of its ability to form complexes with cobalt and nickel. British Geological Survey. Nottingham, Technical Report WE/94/43.
Stevenson, F.J. (1976) Stability constants of Cu2+,Pb2+ and Cd2+ complexes with humic acids. Soil Science Society American Journal, 40, 665-672.
Sunderman, F.W., Jr.: Nickel. In Bronner, F. and Coburn, J.W. (eds.): (1981) Disorders of Mineral Metabolism,Vol. 1. Academic Press, Inc., New York, 201-232.
Suzuki, K.T. (1982) Induction and degradation of metalmium. In Foulkes, E.C. Biological Roles of Metallothionein. Elsevier Scientific Public, Amsterdam, 215-235.
Tseng,W.P. (1997) Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environment Health Perspective, 19, 109-119.
Wilkins, K. (1994) Volatile Organic Compounds From Household Waste. Chemosphere. 29, 47-53.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top