|
(1) Frank W. Newell 原著 林和鳴 譯著. 眼科學精華 ,環球書社(1988). (2) 廖邳銓 和 楊麟栩. 一般眼科學 ,南山堂出版社 (1988). (3) V.L. Taylor, K. J. Al-Ghoul, and M. J. Costello. Morphology of the Normal Human Lens. Invest. Ophthalmol. Vis. Sic. 37, 1396- 1410 (1996) (4) 廖邳銓 和 楊麟栩. 一般眼科學 ,南山堂出版社 (1988). (5) S. P. Halbert and W. Manski. organ specificity with special reference to the lens. Exp Ophthalmol, 149, 200 (1986) (6) M. Delaye and A. Tardieu. Short-range order of crystallin proteins account for eye Lens transparency. Nature, 302, 415-417 (1983) (7) J. J. Harding and K. J. Dillen. Structural protein of the Mammalian lens. Exp. Eye Res., 22, 1-73 (1976) (8) J. Bours.. Calf lens α-crystallin, a molecular Chaperone, Builds Stable complex with β- and γ-crystallin.Ophthalmic Res., 28 (suppll), 23-31 (1996) (9) G.Wistow, C. Slingsby and T. Blundell. Eye-lens protein :the three dimension structure of β-crystallin predicted from monomeric γ-crystallin. FEBS Lett., 133 9-16 (1981) (10)P. F. Lindley, M. E. Narebor, L. J. Summers, and G. J. Wistow. The structure of lens proteins. In H. Maisel (ed). "The Ocular Lens".New York, Marcel Dekker,. 124-164 (1985). (11)Ingolia. T. D. and Craig. E. A.. Four small Drosophila heat shock proteins are related to each other and to mammalian a- crystallin. Proc. Nacd. Sci., USA 79, 2360-2364 (1982). (12) G. Wistow and J. Piatigorsky. Lens crystallins:the evolution and expression of proteins for a highly specialized tissue. Ann. Rev. Biochem. ,57 , 479-504 (1988). (13) D. P. Kail and K. Surewicz. On the substrate specificity of α- crystallin as a molecular chaperone. Biochem. J., 311, 367- 370 (1995). (14) M. Kantorow, J. Horwitz, A. M. Martinus van Boekel, W. W. de Jong and J. Piatigorsky. Conversion from Oligomers to Tetramers Enhances Autophosphorylation by Lens αA-Crystallin. J. Biol. Chem., 270, 17215-17220 (1995). (15) O. P. Lamba, D. Sinha, S. K. Shah and J. Renugopalakrishnan. Estimation of the secondary structure and conformation of bovine lens crystallins by infrared spectroscopy;quantitative analysis and resolution by Fourier self-deconvolution and curve fit. Biochim. Biophys. Acta, 1163, 113-123 (1993). (16) R. J. Siezen and P. Argos. Structural similarity of lens crystallins. Secondary structure estimation from circular dichroism and prediction from amino acid sequences. Biochim. Biophys. Acta, 748, 56-67 (1983). (17) J. A. Carver, J. A. Aquilina and R. J. W. Truscott. An investigation into the stability of a-crystallin by NMR spectroscopy;evidence for a twodomain structure. Biochim. Biophys. Acta, 1164, 22-28 (1993) (18) A. Tardieu, D. Laporte, P. Licino, B. Krop and M. Delaye. Calf lens a-crystallin quaternary structure. J. Mol. Biol., 192, 711-724 (1986). (19) M. T. Walsh, A. C. Sen and B. Chakrabarti. Micellar subunit assembly in a three-layer model of oligomeric a-crystallin. J. Biol. Chem., 266, 20079-20084 (1991) (20) G. J. Wistow. A possible quaternary structure for crystallins and small heat-shock proteins. Exp. Eye Res., 58, 729-732 (1993). (21) A.Carver, J. A. Aquilina, J. W. Truscott. A Possibile Chaperone- like Quaternary Structure for a-crystallin. Exp. Eye Res., 59, 231- 234 (1994) (22) Kearney, P. C., Mizoue, L.S., Kumpf, R.A., Forman, J.E., Mccurdy, A. and Dougherty, D. A. Molecular Recognition in Aqueous Media New Binding Studies-Provide Further Insights into the Cation-p Interaction and Related Phenomena. J. Am. Chem. Soc. 115, 9907- 9919 (1993). (23) Burley, S.K. and Petsko, G.A. Amino-aromatic interactions in protein. FEBS Lett. 203, 139-143 (1986). (24) Wlodawer, A., Walter, J., Huber, R. and Sjorn, L. Structure of Bovine Pancreatic Trypsin Inhibitor Results of Joint Neutron and X- ray Refinement of Crystallin From II. J. Mol. Biol. 180, 301-329 (1984). (25) Tuchsen, E. and Woodward, C. Assignment of Asparagine-44 Side- Chain Primary Amide ¢H NMR Resonances and the Peptide Amide N¢H Resonance of Glycine-37 in Basic Pancreatic Trypsin. Biochemistry 26, 1918-1925 (1987). (26) T. D. Ingolia, E. A. Craig, Proc. Natl. Acad. Sci. U. S. A. 79 (1982) 2360-2364. (27) A. Spector, M. Zorn, Studies upon the Sulfhydryl Groups of Trypsin Calf Lens α-Crystallins. J. Biol. Chem. 242 3594-3600 (1967). (28) Robert C. Augusteyn, Evelyn M. Parkhill and Arthur Stevents The Effects of Isolation Buffers on the Properties of α-Crystallin. Exp. Eye Res. 54. 219-228 (1992). (29) Biplab K. Das, Jack J.-N. Liang and Bireswar Chakrabarti Heat- induced conformational change and increased chaperone activity of lens α-Crystallin. Curr. Eye Res. 16, 303-309 (1997). (30) J. Slavik:Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim. Biophys. Acta, 694, 1-25 (1982). (31) Raman, B., Ramarkrishna, T. and Rao, Ch. M. Temperature dependent chaperone-like activity of α-crystallin. FEBS Lett. 365, 133-136 (1995). (32) Ferahbakhsh, Z. T., Huang, Q.-L., Ding, L.-L., Altenbach, C., Steinhoff, H.-J., Horwitz, J. and Hubbell, W. L. Interaction of a-crystallin with spin-labeled peptides. Biochemistry, 34, 509-516 (1995). (33) Kali P. Das, Witold K. Surewicz, Temperature-induced exposure of hyrdophobic surfaces and its effect on the chaperone activity of a- crystallin. FEBS Letters 369, 321- 325 (1995). (34) Isabella Marini, Luca Bucchioni, Margaret Voltarelli, Antonella Del Corso and Umberto Mura, α-crystallin-link molecular chaperone against the thermal denaturation of lens aldose reductase :the effect of divalent metal ions. Biochemical and Biophysical Research Communications, 212, 413-420 (1995). (35) Sibes Bera, Sudhir K. Ghosh, Biophysical Chemistry, 70 147- 160 (1998). (36) A. Stevens, R.C. Augusteyn, Isolation of a-crystallin subunits by gel filtration. Curr. Eye Res. 6 739-740 (1987). (37) Sonnichsen, F. D., Van Eyk, J. E., Hodges, R. S. and Sykes, B.D. Effect of Trifluoroethanol on Protein Secondary Structure: An NMR Study Using a Synthetic Actin Peptide. Biochemistry 31, 8790-8798 (1992). (38) Waterhous, D.V. and Johnson Jr., W.C. Importance of Environment in Determining Secondary Structure in Proteins. Biochemistry 33, 2121-2128 (1994). (39) Storrs, R.W., Truckses, D. and Wemmer, D.E. Titration of Histidine 62 in R67 Dihydrofolate Reductase Is Linked to a Tetramer?Two- Dimer Equilibrium. Biopolymers 32, 1695-1702 (1992). (40) Linas, M. and Klein, M.P. Change Relay at the Peptide Bond. A Proton Magnetic Resonance Study of Soluation Effect on the Amide Electron Density Distribution. J. Am. Chem. Soc. 97, 4731-4737 (1975).
|