|
[1]D. A. Stenger, G. W. Gross, E. W. Keefer, K. M. Shaffer, J. D. Andreadis, W. Ma, and J. J. Pancrazio, “Detection of physiologically active compounds using cell-based biosensors,” Trends in Biotechnology, 19, pp. 304-309, 2001. [2]L. G. Griffith and G. Naughton, “Tissue engineering-current challenges and expanding opportunities,” Science, 295, pp. 1009-1014, 2000. [3]D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates,” Journal of Neuroscience, 8, pp. 4098-4120, 1988. [4]S. N. Bhatia, M. L. Yarmush, and M. Toner, “Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts,” Journal of Biomedical Materials Research, 34, pp. 189-199, 1997. [5]D. Lehnert, B. Wehrle-Haller, C. David, U. Weiland, C. Ballestrem, B. A. Imhof, and M. Bastmeyer, “Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion,” Journal of Cell Science, 117, pp. 41-52, 2004. [6]K. Seiler, D. J. Harrison and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monition systems,” Journal of Chromatography, 593, pp. 253-258, 1992. [7]Y. N. Xia and G. M. Whitesides, “Soft lithography,” Angewandte Chemie-International Edition, 37, pp. 551-575, 1998. [8]L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan, "Fabrication of plastic microfluid channels by imprinting methods," Analytical Chemistry, 69, pp. 4783-4789, 1997. [9]H. Becker and U. Heim, "Polymer hot embossing with silicon master structures," Sensors and Materials, 11, pp. 297-304, 1999. [10]M. Heckele, W. Bacher, and K. D. Muller, "Hot embossing - The molding technique for plastic microstructures," Microsystem Technologies, 4, pp. 122-124, 1998. [11]H. Becker, and U. Heim, "Hot embossing as a method for the fabrication of polymer high aspect ratio structures," Sensors and Actuators a-Physical, 83, pp. 130-135, 2000. [12]S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science, 272, pp. 85-87, 1996. [13]R. W. Jaszewski, and P. Smith, "Hot embossing in polymers as a direct way to pattern resist," Microelectronic Engineering, 42, pp. 575-578, 1998. [14]L. E. Locascio, C. E. Perso, and C. S. Lee, "Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate," Journal of Chromatography A, 857, pp. 275-284, 1999. [15]M. Rode, and B. Hillerich, "Self-aligned positioning of microoptical components by precision prismatic grooves impressed into metals," Journal of Microelectromechanical Systems, 8, pp. 58-64, 1999. [16]D. Snakenborg, H. Klank, and J. P. Kutter, “Microstructure fabrication with a CO2 laser system,” Journal of Micromechanics and Microengineering, 14, pp. 182-189, 2004. [17]K. S. Huang, T. H. Lai, and Y. C. Lin, “Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles,” Lab on a Chip, 6, pp. 954-957, 2006. [18]K. S. Huang, T. H. Lai, and Y. C. Lin, “Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation,” Frontiers in Bioscience, 12, pp. 3061-3067, 2006. [19]R. M. McCormick, R. J. Nelson, M. G. AlonsoAmigo, J. Benvegnu, and H. H. Hooper, “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates,” Analytical Chemistry, 69, pp. 2626-2630, 1997. [20]P. J. Crosland-Taylor, “A device for counting small particles suspended in a fluid through a tube,” Nature, 171, pp. 37-38, 1953. [21]D. A. Drew, and R. T. Lahey, “Phase-distribution mechanisms in turbulent low-quality 2-phase flow in a circular pipe,” Journal of Fluid Mechanics, 117, pp. 91-106, 1982. [22]J. Takagi, M. Yamada, M. Yasuda, and M. Seki, “Continuous particle separation in a microchannel having asymmetrically arranged multiple branches,” Lab on a Chip, 5, pp. 778-784, 2005. [23]S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using "flow focusing" in microchannels,” Applied Physics Letters, 82, pp. 364-366, 2003. [24]I. Kobayashi, S. Mukataka, and M. Nakajima, “Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions,” Langmuir, 21, pp. 7629-7632, 2005. [25]K. Liu, H. J. Ding, J. Liu, Y. Chen, and X. Z. Zhao, “Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device,” Langmuir, 22, pp. 9453-9457, 2006. [26]H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R. M. A. Sullan, G. C. Walker, and E. Kumacheva, “Microfluidic production of biopolymer microcapsules with controlled morphology,” Journal of the American Chemical Society, 128, pp. 12205-12210, 2006. [27]X. Jiang, Q. Xu, S. K. W. Dertinger, A. D. Stroock, T. Fu, and G. M. Whitesides, “A general method for patterning gradients of biomolecules on surfaces using microfluidic networks,” Analytical Chemistry, 77, pp. 2338-2347, 2005. [28]R. M. Lorenz, G. S. Fiorini, G. D. M. Jeffries, D. S. W. Lim, M. He, and D. T. Chiu, “Simultaneous generation of multiple aqueous droplets in a microfluidic device,” Analytica Chimica Acta, 630, pp. 124-130, 2008. [29]X. Zhu, L. Y. Chu, B. Chueh, M. Shen, B. Hazarika, N. Phadke, and S. Takayama, “Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation,” Analyst, 129, pp. 1026-1031, 2004. [30]S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, “Generation of gradients having complex shapes using microfluidic networks,” Analytical Chemistry, 73, pp. 1240-1246, 2001. [31]T. H. Park, and M. L. Shuler, “Integration of cell culture and microfabrication technology,” Biotechnology Progress, 19, pp. 243-253, 2003. [32]A. Folch, and M. Toner, “Microengineering of cellular interactions,” Annual Review of Biomedical Engineering, 2, pp. 227-256, 2000. [33]C. Wyart, C. Ybert, L. Bourdieu, C. Herr, C. Prinz, and D. Chatenay, “Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces,” Journal of Neuroscience Methods, 117, pp. 123-131, 2002. [34]Y. Katanosaka, J. H. Bao, T. Komatsu, T. Suemori, A. Yamada, S. Mohri, and K. Naruse, “Analysis of cyclic-stretching responses using cell-adhesion-patterned cell,” Journal of Biotechnology, 133, pp. 82-89, 2008. [35]T. Das, S. K. Mallick, D. Paul, and T. K. Maiti, “Microcontact printing of concanavalin a and its effect on mammalian cell morphology,” Journal of Colloid and Interface Science, 314, pp. 71-79, 2007. [36]S. Takayama, J. C. McDonald, E. Ostuni, M. N. Liang, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, “Patterning cells and their environments using multiple laminar fluid flows in capillary networks,” Proceedings of the National Academy of Sciences of the United States of America, 96, pp. 5545-5548, 1999. [37]S. Takayama, E. Ostuni, X. P. Qian, J. C. McDonald, X. Y. Jiang, P. LeDuc, M. H. Wu, D. E. Ingber, and G. M. Whitesides, “Topographical micropatterning of poly(dimethylsiloxane) using laminar flows of liquids in capillaries,” Advanced Materials, 13, pp. 570-574, 2001. [38]S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides, “Laminar flows - subcellular positioning of small molecules,” Nature, 411, pp. 1016, 2001. [39]Y. D. Kim, C. B. Park, and D. S. Clark, “Stable sol-gel microstructured and microfluidic networks for protein patterning,” Biotechnology and Bioengineering, 73, pp. 331-337, 2001. [40]Y. Li, B. Yuan, H. Ji, D. Han, S. Chen, F. Tian, and X. Jiang, “A method for patterning multiple types of cells by using electrochemical desorption of self-assembled monolayers within microfluidic channels,” Angewandte Chemie-International Edition, 46, pp. 1094-1096, 2007. [41]A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, “Microfabiricated elastomeric stencils for micropatterning cell cultures,” Journal of Biomedical Materials Research, 52, pp. 346-353, 2000. [42]N. E. Sanjana, and S. B. Fuller, “A fast flexible ink-jet printing method for patterning dissociated neurons in culture,” Journal of Neuroscience Methods, 136, pp. 151-163, 2004. [43]M. Bani-Yaghoub, R. Tremblay, R. Voicu, G. Mealing, R. Monette, C. Py, K. Faid, and M. Sikorska, “Neurogenesis and neuronal communication on micropatterned neurochips,” Biotechnology and Bioengineering, 92, pp. 336-345, 2005. [44]http://www.microchem.com/, Specialty electronic materials for emerging and niche lithographic processes, 2005. [45]H. Andersson, C. Jönsson, C. Moberg, and G. Stemme, “Consecutive microcontact printing-ligands for asymmetric catalysis in silicon channels,” Sensors and Actuators B, 79, pp. 78-84, 2001. [46]B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-Dimensional Micro-Channel Fabrication in PDMS Elastomer,” Journal of Microelectromechanical Systems, 9, pp. 76-81, 2000.
|