跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳姿彤
研究生(外文):Tzu-Tung Chen
論文名稱:以臺灣中部雲杉樹輪重建三百年古氣候:利用傳統樹輪及總體經驗模態分解法
論文名稱(外文):300-year dendroclimatic reconstructions based on conventional methods and Ensemble Empirical Mode Decomposition using Picea morrisonicola tree rings from central Taiwan
指導教授:魏國彥魏國彥引用關係
指導教授(外文):Kuo-Yen Wei
口試委員:關秉宗曾于恆萊威廉
口試日期:2011-05-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:116
中文關鍵詞:樹輪氣候學臺灣雲杉總體經驗模態分解法最高溫日較溫差
外文關鍵詞:dendrochronologyPicea morrisonicolaEnsemble Empirical Mode Decomposition (EEMD)maximum temperaturediurnal temperature range
相關次數:
  • 被引用被引用:9
  • 點閱點閱:465
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以塔塔加山區的臺灣雲杉 (Picea morrisonicola) 樹輪寬度資料建立輪寬年表,作為探討過去氣候變化的依據,結果重建了 373 年 (1636-2008) 的樹輪寬度年表。根據氣候對樹木生長影響機制,將樹輪寬度與氣候因子進行相關及反應函數分析,結果顯示晚材輪寬主要反映阿里山 7-9 月平均最高溫 (maximum temperature, Tmax);而早材輪寬主要反映 4-6 月日較溫差 (Diurnal Temperature Range, DTR)。

為了改善傳統樹輪年表建立方法 (ARSTAN) 中,主觀去除樹木生長趨勢的問題,本研究以黃鍔院士在 1998 年所提出「希爾伯特—黃轉換 (Hilbert-Huang Transform, HHT) 」中之總體經驗模態分解法 (Ensemble Empirical Mode Decomposition, EEMD) 法作為建立年表的替代方法,將樹輪寬度序列分解為具有不同頻率訊息的分量,並以與氣候反應最佳的分量組合做為新的分量總和年表,提供一個有別於傳統樹輪建立年表的替代方法。EEMD 與 ARSTAN 年表所重建之 Tmax 與 DTR 皆通過重建模式技巧檢測且結果相似,但 EEMD 總和年表在 DTR 重建上結果較佳。

由修正晚材殘差年表所重建之阿里山山區過去 373 年的 7-9 月 Tmax,重建結果可解釋觀測期間 (1951-2008) 7-9 月 Tmax 之 23% 變異 (r=0.48),並顯示幾個較明顯的暖期,分別是 1718-1726、1908-1916 與 2002-2008。由 NCEP/NCAR 再分析資料顯示 Tmax 反映臺灣夏季受西太平洋夏季季風 (Western North Pacific Summer Monsoon, WNPSM) 的影響,在少雨年時,WNPSM 其中一個環流系統—西太平洋副熱帶高壓 (Western Pacific Subtropical High, WPSH) 規模擴大並往西延伸,阻擋西南氣流及梅雨鋒面,並伴隨著東海的反氣旋活動,因而產生異常溫暖且乾燥的夏季,並對應到較大輪寬發生的年份。此外,重建的 Tmax 中最溫暖的 10 年有 8 年與 El Niño 事件的年份相符合,表現出臺灣夏季 Tmax 與 ENSO 活動的關聯性。

以早材 IMF 總和年表重建之阿里山山區過去 373 年 4-6 月日較溫差 (DTR) 可解釋觀測期間 (1934-2000) DTR 之 28% 變異 (r=0.53)。阿里山日照時數與 DTR 的變化趨勢一致 (r=0.87),而日照時數減少是日間雲層覆蓋量增加的結果,由 DTR 與雲量間顯著的負相關,可證實阿里山山區 DTR 的變小確實與增加的中高雲量有關。此外,重建之 DTR 顯示過去地表接受到的太陽輻射量變化週期約為 28 年;可反映其變化所引起的 global dimming/brightening 及推測 DTR 開始大幅變化的起始時間點。

Virtually very little dendrochronology data have been reported internationally from Taiwan, despite the existence of many dendrochronologically appropriate tree species. In this study, the potential for reconstruction of local paleoclimate was investigated using multi-century tree-ring chronologies developed from Picea morrisonicola (the endemic Taiwan Spruce). Significant correlations were found against the mean April-June diurnal temperature range (DTR) and against the mean July-September maximum temperature (Tmax). Both of these climate parameters were reconstructed based on the regression relationships.

In a related study, a new frequency decomposition method called empirical mode decomposition (EMD), one part of the Hilbert-Huang Transform (HHT), was investigated as an alternative to standard methods of chronology generation in terms of climate signal. A noise assisted version of EMD called ensemble empirical mode decomposition (EEMD) was used to decompose the tree-ring time series into a series of quasi-periodic modes from high to low frequency. Consecutive modes were combined from high to low frequency and compared with the climate data. The combination with the most significant climate relationships was then used to reconstruct the climate parameters. As with the reconstructions using traditional methods of chronology generation, statistics from the reconstructions of DTR and Tmax also passed tests for model skill. The reconstruction statistics and variance explained were similar for both methods of chronology generation, with EEMD chronology having better results in the DTR reconstruction and the traditional chronology having better results in the Tmax reconstruction.

Adjusted latewood ring widths show significant (p<0.01) positive correlation against Alishan July-September Tmax. Linear regression of the Alishan Tmax on the tree-ring chronology produced a calibration model that accounted for 23% of the actual Tmax variance. This model was used to reconstruct the July-September Tmax back to A.D. 1636. The reconstruction shows warm periods during 1718-1726, 1908-1916, and 2002-2008. Evidence from comparisons with NCEP-NCAR reanalysis data indicates that the summer climate variability in Taiwan is regulated by processes associated with changes in the Western Pacific Subtropical High (WPSH). In years with less precipitation the WPSH reduces the southwesterly monsoonal flow by extending further westward than in other years. This appears as an anomalous warm and dry summer accompanied with anti-cyclonic motion over the East China Sea. In addition, eight of the ten warmest summers (July-September Tmax) in central Taiwan occurred during El Niño years, indicating a link between Taiwan summer maximum temperatures and ENSO dynamics.

The earlywood mean chronology was calibrated against April-June DTR. A calibration model that accounted for 28% of the actual DTR variance was then produced to reconstruct the DTR. The increasing Tmin, which can be attributed to locally increased cloud cover, contributed to the reduction of DTR. The reconstructed DTR has a cycle of period 28 years, showing the variations in solar irradiance possibly due to cloudiness changes.

摘要 .........................................................................................................................................................VII
Abstract ...................................................................................................................................................IX
英文專有名詞縮寫表及其中文譯名 .............................................................................................XI
圖目錄 ....................................................................................................................................................XII
表目錄 ..................................................................................................................................................XVI
第一章、前言 ......................................................................................................................................1
1.1 研究背景 ................................................................................................................................1
1.2 研究目的 ................................................................................................................................3
1.3 古氣候代用指標—樹輪 ....................................................................................................5
1.4 臺灣的樹輪氣候學研究 ....................................................................................................5
第二章、樹木的生長與氣候 ..........................................................................................................8
2.1 樹輪的形成 ............................................................................................................................8
2.2 樹輪氣候學 ............................................................................................................................9
2.3 樹木生長與氣候反映 ......................................................................................................12
第三章、研究區域概述 ..................................................................................................................14
3.1 地理位置與環境 ................................................................................................................14
3.2 氣候與植群 ..........................................................................................................................15
3.3 研究樹種介紹 .....................................................................................................................16
3.4 氣象資料 ...............................................................................................................................16
3.4.1 氣象站資料 .................................................................................................................16
3.4.2 日較溫差 ......................................................................................................................18
3.4.3 再分析資料 .................................................................................................................20
3.4.4 ISCCP 雲量資料 ........................................................................................................21
3.5 水系與地質 ..........................................................................................................................21
3.6 環境擾動記錄 .....................................................................................................................22
第四章、研究方法 ...........................................................................................................................23
4.1 採樣與樣本前處理 ...........................................................................................................23
4.2 樹輪寬度測量與交互定年 .............................................................................................25
4.3 樹輪寬度年表建立 ...........................................................................................................30
4.3.1 利用 ARSTAN 建立年表 ......................................................................................30
4.3.1.1 標準化 ................................................................................................................30
4.3.1.2 樹輪年表建立 ..................................................................................................32
4.3.2 利用希爾伯特—黃轉換 (HHT) 法建立年表 .................................................35
4.3.2.1 經驗模態分解法 (EMD) ...............................................................................37
4.3.2.2 總體經驗模態分解法 (EEMD) ..................................................................39
4.3.2.3 IMF 分量的性質 .............................................................................................40
4.3.2.4 樹輪年表建立 ..................................................................................................40
4.4 氣候重建 ...............................................................................................................................41
4.4.1 反應函數 ......................................................................................................................41
4.4.2 校正與驗證 .................................................................................................................42
第五章、結果 ....................................................................................................................................44
5.1 輪寬年表 ...............................................................................................................................44
5.1.1 ARSTAN 建立之年表 ............................................................................................44
5.1.2 EEMD 法建立之年表 .............................................................................................50
5.1.2.1 早材年表 ............................................................................................................50
5.1.2.2 晚材年表 ............................................................................................................52
5.2 樹輪生長與氣候關係 ......................................................................................................54
5.3 暖季 ( 7-9月) 平均最高溫重建 .....................................................................................56
5.4 月平均日較溫差重建 ......................................................................................................61
第六章、討論 ....................................................................................................................................66
6.1 樹木生長與氣候關係 ......................................................................................................66
6.1.1 樹木生長的氣候反映 ..............................................................................................66
6.1.2 不同溫度變化幅度之影響 ....................................................................................66
6.1.3 不同樹齡對氣候的反映 .........................................................................................68
6.2 夏季平均最高溫變化 ......................................................................................................70
6.2.1 夏季平均最高溫與修正晚材反映 ......................................................................70
6.2.2 與其他樹輪年表比較 ..............................................................................................70
6.2.3 合成分析 ......................................................................................................................71
6.2.4 區域性雲量變化 .......................................................................................................75
6.2.5 ENSO 與 PDO ............................................................................................................76
6.3 日較溫差變化 .....................................................................................................................80
6.3.1 日較溫差變化原因 ..................................................................................................80
6.3.2 日較溫差與早材輪寬變化之關係 ......................................................................80
6.3.3 雲量與日照時數 .......................................................................................................81
6.3.4 全球黯化 (Global dimming) 現象 ......................................................................83
6.3.5 氣候/樹木生長關係分歧 ........................................................................................86
6.4 傳統方法與 HHT 之比較 ..............................................................................................88
6.4.1 重建結果 ......................................................................................................................88
6.4.2 氣候訊息 ......................................................................................................................89
第七章、結論 ....................................................................................................................................92
第八章、參考文獻 ...........................................................................................................................94
第九章、附錄 ..................................................................................................................................103
附錄 1 生長錐使用方法 ......................................................................................................103
附錄 2 交互定年檢驗軟體 COFECHA ..........................................................................104
附錄 3 ARSTAN 建立年表軟體 ......................................................................................109
附錄 4 Edrm 軟體:修改或重新編輯年份 ..................................................................110
附錄 5 合成年表之採樣立木資料 ...................................................................................111
附錄 6 未合成年表之採樣立木資料 ..............................................................................112
附錄 7 COFECHA 檢驗結果 ..............................................................................................113

王曉春、宋萊萍、張遠東 (2011),大興安嶺北部樟子松樹木生長與氣候因子的關
係,植物生態學報,35 (3),294-302 頁。
邦卡兒.海放南 (2007a),論塔塔加地區高山植物的物候期,林業研究專訊,14 
 (5)。
邦卡兒.海放南 (2007b),塔塔加地區植物相調查與解說規劃,靜宜大學生態學系
碩士論文,共 217 頁。
呂勝由、陳舜英 (1996),本省雲杉林生態之研究,臺灣省林業試驗所簡訊,17-20
頁。
呂志廣 (2001),金門地區木麻黃生長輪與氣候關係之研究,國立東華大學自然資
源管理研究所碩士論文,共 72 頁。
呂理昌 (1990),玉山國家公園植物開花週期之研究 (塔塔加-玉山主峰)。
邱景星 (1994),臺灣玉山冷杉樹輪中穩定碳同位素組成變化之初步研究,國立中
山大學海洋地質研究所碩士論文,共 66 頁。
柳榗 (1966),台灣產松柏類植物地理,臺灣省林業試驗所報告,122。
姚銘輝、盧虎生、朱鈞 (1999),臺灣地區日溫差之分析,中華農學會報,188,
32-46 頁。
陳信雄、姚榮鼐、魏聰輝 (2000),塔塔加生態系鄰近地區的氣候變遷,14,91-98
頁。
陳昭銘、范惠菱 (2003),南海夏季降雨年際變化與侵台颱風之關係,大氣科學,
31 (3),221-238 頁。
陳玉峰 (1989),玉山國家公園楠溪林道永久樣區植被調查報告 (一),內政部營建
 署玉山國家公園管理處。
陳玉峰 (2002),塔塔加遊憩區及鄰近地區高地草原及其他植群之變遷,國立台灣
博物館年刊,45,35-82 頁。
張世振 (2006),臺灣西南部大武山區氣候對樹輪寬度變化之影響,輔英科技大學
環境工程與科學系碩士論文,共 87 頁。
張琬玉 (2004),台灣颱風季乾旱與大尺度環流場的關係,國立臺灣大學大氣科學
研究所碩士論文,共 100 頁。
張繡慧 (1999),台灣北部昆欄樹樹輪對氣候因子之反映,國立臺灣大學地質科學
研究所碩士論文,共 64 頁。
程膺 (1999),棲蘭山區樹木年輪和氣候關係之研究,國立東華大學自然資源管理
研究所碩士論文,共 76 頁。
詹明勳,王亞南,王松永 (2004),Soft X-ray 影像分析法應用於天然林台灣櫸、樟
樹及烏心石樹輪寬度及密度分析之研究,中華林學季刊,37 (4),379-392頁。
詹明勳、王亞男、葉永廉 (2005),台灣中部塔塔加地區台灣雲杉樹輪氣候學研究
過去 245 年氣溫與降雨量趨勢,中華林學季刊,38 (1),67-82 頁。
鄒佩珊 (1998),台灣山區近五百年的氣候變化:樹輪寬度的證據,國立台灣大學
地質科學研究所博士論文,共 86 頁。
楊金昌、王亞男、姜家華、賴裕芳 (1998),塔塔加地區台灣雲杉、台灣鐵杉及玉
山箭竹物候學之初步研究,中華林學季刊,31 (3),251-263 頁。
劉婉霞 (2009),不同海拔地區樟樹樹輪徑向生長與氣候因子相關之研究,國立嘉
義大學森林暨自然資源學系研究所碩士論文,共 71 頁。
劉昭民 (2000),清代台灣強烈地震記錄及奇聞資料,中華科技史同好會會刊,1
(2)。
賴彥任 (2007),臺大實驗林 921 後崩塌地治理工法的研究,臺大實驗林研究報告
,21 (4),337-347 頁。
賴栗葦、姜善鑫 (2004),臺灣地區月平均氣溫日較差趨勢分析 地理學報,36,
101-116 頁。
蘇鴻傑 (1992),台灣之植群:山地植群帶與地理氣候區,中央研究院植物所專刊
第 11號,39-53 頁。
顧斌 (1995),玉山冷杉樹木面積、穩定碳同位素及溫度效應之研究,國立中山大
學海洋地質研究所碩士論文,共 67 頁。
Ahmed, M., M. Wahab, and N. Khan (2009), Dendroclimatic investigation in Pakistan, using Picea smithiana (wall) boiss., preliminary results, Pakistan Journal of Botany, 41(5), 2427-2435.
Akaike, H. (1974), A new look at the statistical model identification, IEEE Transactions on Automatic Control, AC-19(6).
Braganza, K., D. J. Karoly, and J. M. Arblaster (2004), Diurnal temperature range as an index of global climate change during the twentieth century, Geophysical Research Letters, 31.
Büntgen, U., D. C. Frank, M. Schmidhalter, B. Neuwirth, M. Seifert, and J. Esper (2005), Growth/climate response shift in a long subalpine spruce chronology, Trees, 20(1), 99-110.
Carrer, M., and C. Urbinati (2004), Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra, Ecology, 85(3), 730-740.
Chen, J.-M., F.-C. Lu, S.-L. Kuo, and C.-F. Shin (2005), Summer climate variability in Taiwan and associated large-scale processes, Journal of the Meteorological Society of Japan, 83(4), 499-516.
Cook, E. R. (1985), A time series analysis approach to tree ring standardization, 171 pp, Arizona.
Cook, E. R. (1987), The decomposition of tree-ring series for environmental studies, Tree-Ring Bulletin, 47.
Cook, E. R., and R. L. Holmes (1984), Program ARSTAN users manual. Laboratory of Tree Ring Research, edited, University of Arizona, Tucson.
Cook, E. R., and L. A. Kairiukstis (1990), Methods of dendrochronology: Applications in the environmental sciences, Kluwer Academic Publishers.
Cook, E. R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland (1999), Drought reconstructions for the continental United States, Journal of Climate, 12(4), 1145-1162.
Cyuan, H.-D. (2007), Vegetation Investigation and Interpretive Design in Tataka Area, 217 pp, Providence University, Taichung.
D''Arrigo, R., R. Wilson, B. Liepert, and P. Cherubini (2008), On the ‘Divergence Problem’ in Northern Forests: A review of the tree-ring evidence and possible causes, Global and Planetary Change.
Dai, A., and K. E. Trenberth (1999), Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range, Journal of Climate, 12.
Denne (1988), Definition of late wood according to Mork (1928), I AWA Bulletin n. s., 10, 59-62.
Earle, C. J., L. B. Brubaker, A. V. Lozhkin, and P. M. Anderson (1994), Summer temperature since 1600 for the upper Kolyma Region, northeastern Russia, reconstructed from tree rings, Arctic and Alpine Research, 26(1), 60-65.
Easterling, D. R., et al. (1997), Maximum and minimum temperature trends for the globe, Science, 277(5324), 364-367.
Flower, A. (2004), A dendroclimatic investigation in the northern Canadian Rocky Mountains, British Columbia Humboldt State University.
Friedrich, M., S. Remmele, B. Kromer, J. Hofmann, M. Spurk, K. F. Kaiser, C. Orcel, and M. Küppers (2004), The 12460-year Hohenheim oak and pine tree-ring chronology from central Europe: A unique annual record for radiocarbon calibration and paleoenvironment reconstructions, Radiocarbon, 46(3), 1111-1122.
Fritts, H. C. (1976), Tree Rings and Climate, 2 ed., The Blackburn Press.
Fritts, H. C., T. J. Blasing, B. P. Hayden, and J. E. Kutzbach (1971), Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate, 10(5), 845-864.
Gou, X., M. Yang, J. Peng, Y. Zhang, T. Chen, and Z. Hou (2006), Maximum temperature reconstruction for Animaqing mountains over past 830 years based on tree-ring records, Quaternary Sciences, 26(6), 991-998.
Gou, X., J. Peng, F. Chen, M. Yang, D. F. Levia, and J. Li (2008), A dendrochronological analysis of maximum summer half-year temperature variations over the past 700 years on the northeastern Tibetan Plateau, Theoretical and Applied Climatology, 93(3-4), 195-206.
Guo, G., Z.-S. Li, Q.-B. Zhang, K.-P. Ma, and C. Mu (2009), Dendroclimatological studies of Picea Likiangensis and Tsuga dumosa in Lijinag, China, IAWA, 30(4), 435-441.
Hodder, R. C. J., and Stoughton (2000), El Niño: The Weather Phenomenon that Changed the World.
Hoyt, D. V. (1977), Percent of possible sunshine and the total cloud cover, Monthly Weather Review, 105, 648-652.
Hsueh, Y.-H., B. T. Guan, M.-K. Wang, P.-N. Chiang, and S.-T. Lin (2006), Using stable carbon isotope to infer the possible major vegetation types dynamics at Ta-Ta-Chia site, central Taiwan, Quarterly Journal of Chinese Forestry, 39(4), 449-458.
Huang, N. E., and Z. Wu (2008), A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Reviews of Geophysics, 46(2), RG2006.
Huang, N. E., Z. Shen, and S. R. Long (1999), A new view of nonlinear water waves: The Hilbert spectrum, Annual Review of Fluid Mechanics, 31, 417-457.
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995.
Jacoby, G., O. Solomina, D. Frank, N. Eremenko, and R. D''Arrigo (2004), Kunashir (Kuriles) Oak 400-year reconstruction of temperature and relation to the Pacific Decadal Oscillation, Palaeogeography, Palaeoclimatology, Palaeoecology, 209(1-4), 303-311.
Jacoby, G. C. (1997), Application of tree ring analysis to paleoseismology, Reviews of Geophysics, 35(2), 109-124.
Jhajharia, D., and V. P. Singh (2010), Trends in temperature, diurnal temperature range and sunshine duration in Northeast India, International Journal of Climatology, n/a-n/a.
Jones, P. D., et al. (2009), High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects, The Holocene, 19(1), 3-49.
Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77(3), 437-471.
Karl, T. R., G. Kukla, and J. Gavin (1984), Decreasing diurnal temperature range in the United States and Canada from 1941 through 1980, Journal of Climate and Applied Meteorology, 23(11), 1489-1504.
Lebourgeois, F. (2000), Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France, Ann. For. Sci., 57, 155-164.
Liepert, B. G. (2002), Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990, Geophysical Research Letters, 29(10).
Liepert, B. G., and G. J. Kukla (1997), Decline in global solar radiation with increased horizontal visibility in Germany between 1964 and 1990, Journal of Climate, 10(9), 2391-2401.
Liu, B., M. Xu, M. Henderson, Y. Qi, and Y. Li (2004), Taking China’s temperature: Daily range, warming trends, and regional variations, 1955–2000, Journal of Climate, 17, 4453-4462.
Liu, S. C., C.-H. Wang, C.-J. Shiu, H.-W. Chang, C.-K.Hsiao, and S.-H. Liaw (2002), Reduction in sunshine duration over Taiwan: Causes and implications, Terrestrial, Atmospheric and Oceanic Sciences, 13, 523-546.
Mantua, N. J., and S. R. Hare (2002), The Pacific Decadal Oscillation, Journal of Oceanography, 58(1), 35-44.
Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis (1997), A Pacific interdecadal climate oscillation with impacts on salmon production, Bulletin of the American Meteorological Society, 78(6), 1069-1079.
Meko, D. M., and C. H. Baisan (2001), Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American monsoon region, International Journal of Climatology, 21(6), 697-708.
Merwe, N. J. v. d., and E. Medina (1991), The canopy effect, carbon isotope ratios and foodwebs in amazonia, Journal of Archaeological Science, 18(3), 249-259.
Mork, E. (1928), Die Qualität des Fichtenholzes unter besonderer Rücksichtnahme auf Schleif- und Papierholz., Der Papier Fabrikant, 26, 741-747.
Rebetez, M., and M. Beniston (1998), Changes in sunshine duration are correlated with changes in daily temperature range this century: An analysis of Swiss climatological data, Geophysical Research Letters, 25(19), 3611-3613.
Rossow, W. B., and R. A. Schiffer (1991), ISCCP cloud data products, Bulletin of the American Meteorological Society, 72, 2-20.
Rossow, W. B., and E. N. Dueñas (2004), The International Satellite Cloud Climatology Project (ISCCP) website: An online resource for research, Bulletin of the American Meteorological Society, 85(2), 167-172.
Sheu, D. D., P. Kou, C. H. Chiu, and M.-J. Chen (1996), Variability of tree-ring δ13C in Taiwan fir: Growth effect and response to May–October temperatures.pdf, Geochimica et Cosmochimica Acta, 60(1), 171-177.
Shi, X., N. Qin, H. Zhu, X. Shao, Q. Wang, and X. Zhu (2010), May–June mean maximum temperature change during 1360–2005 as reconstructed by tree rings of Sabina Tibetica in Zaduo, Qinghai Province, Chinese Science Bulletin, 55(26), 3023-3029.
Shiu, C.-J., J.-P. Chen, and S. C. Liu (2004), Aerosols and clouds impact on the diurnal temperature range in the atmospheric boundary layer.
Stanhill, G. (2005), Global dimming: A new aspect of climate change, Weather, 60(1), 11-14.
Stanhill, G., and S. Cohen (2001), Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences, Agricultural and Forest Meteorology, 107, 255-278.
Stokes, M. A., and T. L. Smiley (1996), An Introduction to Tree-Ring Dating, The University of Arizona Press.
Stone, D. A., and A. J. Weaver (2003), Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model, Climate Dynamics, 20, 435-445.
Storch, H. v., and A. Navarra (1999), Analysis of Climate Variability: Applications of Statistical Techniques, 2 ed., Springer.
Streets, D. G., Y. Wu, and M. Chin (2006), Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition, Geophysical Research Letters, 33(15).
Sun, D., M. Kafatos, R. T. Pinker, and D. R. Easterling (2006), Seasonal variations in diurnal temperature range from satellites and surface observations, IEEE Transactions on Geoscience and Remote Sensing, 44(10).
Tsou, P.-S., and T.-K. Liu (1996), Temperature in Taiwan during the last 300 years as reconstructed from tree-ring records, Tree Rings, Environment and Humanity, 325-334.
Vaganov, E. A., M. K. Hughes, and A. V. Shashkin (2006), Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments, 1 ed., 354 pp., Springer.
Valmore C. LaMarche, J., and H. Katherine K (1984), Frost rings in trees as records of major volcanic eruptions, Nature, 307.
Vieira, J., F. Campelo, and C. Nabais (2008), Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate, Trees, 23(2), 257-265.
Wang, G., X.-Y. Chen, F.-L. Qiao, Z. Wu, and N. E. Huang (2010), On Intrinsic Mode Function, Advances in Adaptive Data Analysis (AADA), 2(3), 277-293.
Weber, R. O., P. Talkner, and G. Stefanicki (1994), Asymmetric diurnal temperature change in the Alpine region, Geophysical Research Letters, 21(8), 673-676.
Weng, J.-H., T.-S. Liao, K.-H. Sun, J.-C. Chung, C.-P. Lin, and C.-H. Chu (2005), Seasonal variations in photosynthesis of Picea morrisonicola growing in the subalpine region of subtropical Taiwan, Tree Physiology.
Weng, S.-P. (2010), Changes of diurnal temperature range in Taiwan and their large-scale associations: univariate and multivariate trend analyses, Journal of the Meteorological Society of Japan, 88(2), 203-226.
Wigley, T. M. L., K. R. Briffa, and P. D. Jones (1984), On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology, Journal of Applied Meteorology, 23(2).
Wild, M. (2005), From dimming to brightening: Decadal changes in solar radiation at earth''s surface, Science, 308(5723), 847-850.
Wild, M., A. Ohmura, and K. Makowski (2007), Impact of global dimming and brightening on global warming, Geophysical Research Letters, 34(4).
Wilson, R. (2002), Tree-ring reconstruction of maximum and minimum temperatures and the diurnal temperature range in British Columbia, Canada, Dendrochronologia, 20(3), 257-268.
Wilson, R. J. S., and B. H. Luckman (2003), Dendroclimatic reconstruction of maximum summer temperatures from upper treeline sites in Interior British Columbia, Canada, The Holocene, 13(6), 851-861.
Wu, Z., and N. E. Huang (2008), Ensemble empirical mode decomposition: A noise assisted data analysis mothod, AdvancesinAdaptiveDataAnalysis, 1(1), 1-41.
Wu, Z., N. E. Huang, S. R. Long, and C. K. Peng (2007), On the trend, detrending, and variability of nonlinear and nonstationary time series, Proceedings of the National Academy of Sciences, 104(38), 14889-14894.
Xue-zhao, H., and G. Dao-yi (2002), Interdecadal change in Western Pacific Subtropical High and climatic effects, Journal of Geographical Sciences, 12(2), 202-209.
Ye, J., F. Li, G. Sun, and A. Guo (2009), Solar dimming and its impact on estimating solar radiation from diurnal temperature range in China, 1961–2007, Theoretical and Applied Climatology, 101(1-2), 137-142.
Zalatan, R., and K. Gajewski (2005), Tree-ring analysis of five Picea Glauca-dominated sites from the interior boreal forest in the shakwak trench, Yukon territory, Canada, Polar Geography, 29(1), 1-16.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top