跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 10:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林文中
研究生(外文):Lin, Wen-chung
論文名稱:藉由遞迴類神經網路建構基因調控網路的定性模型
論文名稱(外文):Qualitative Modeling of Genetic Regulatory Networks via Recurrent Artificial Neural Network
指導教授:陳春賢陳春賢引用關係
指導教授(外文):Chen, Chun-Hsien
學位類別:碩士
校院名稱:長庚大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:77
中文關鍵詞:癌症基因調控合取神經組析取神經組遞迴類神經網路
外文關鍵詞:cancergene regulationAND neural assemblyOR neural assemblyrecurrent artificial neural network
相關次數:
  • 被引用被引用:1
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
癌症位居國人的十大死因第一位,對於癌症治療的研究倍受重視,在臨床上,缺乏於正常細胞及腫瘤間可供辨識的專一性差異,是目前發展專一性抗癌療法的主要障礙,欲治癒腫瘤首要必須使所有腫瘤的幹細胞失去其產生子代細胞的能力。因此透過對於細胞週期的過程及其控制機轉的瞭解,進而瞭解整個癌症在惡性變性過程中的所有細節,才能對癌症做有效的治療。本篇論文便是為了使病患在接受醫療的過程中,提供一個兼具有計算功能和表現價值的醫療輔助工具,而提出了一個以“藉由遞迴類神經網路建構基因調控網路的定性模型(Qualitative Modeling of Genetic Regulatory Networks via Recurrent Artificial Neural Network)”,使得基因醫療工作者能夠模擬病患接受治療後基因的變化情形,以決定是否以該療程對該病患進行治療。
在模型中,我們假設基因調控網路已經經由實驗確定的情況下,利用遞迴類神經網路所建構出來的表示方法及計算方法,並且可以用來模擬及表示基因之間的功能相依性。這個定性模型不僅可用圖示的方式來表示基因與基因之間的相互關係,更可以將其基因彼此間的定性相互作用模擬出來。模型除了結合基因調控(Gene Regulation)、布林網路(Kauffmann, 1993)、及類神經網路外,更結合了連續的離散時間這個觀念,使得在呈現及模擬上,更加地接近真實情況,進而幫助基因工作者來瞭解和推論藥物和有毒化學物質對於基因的影響。

According to the statistical abstract from Department of Health, Taiwan, R.O.C., 2001, cancer is still in the fist place in the cause of the death. Because of this reason, the therapy of cancer is widely emphasized on. Clinically, we can not tell the specific difference between the normal cell and cancer cell. This is one of the barriers to develop the therapy of cancer. Owing to these, a proposed qualitative model in order to help gene-related-disease workers to understand and reason the effect of toxic chemicals and medicines that are capable of activating or inactivating certain genes in the treatment of gene-related diseases. In this paper, we propose to model gene regulation networks qualitatively via recurrent artificial neural network.
In this model, we assume the gene regulation network is definitive. Such a computational and representational model can reason about the interactions among related genes effectively and intuitively. It can help trace snapshots of gene regulatory dynamics at any two consecutive time steps concurrently along the discrete time line and it can help to produce what-if scenario when certain genes are activated or inactivated purposely as needed. Hence, it can serve as an auxiliary tool for gene-related-disease workers.

第1章 緒論…………………………………………………………1
1.1 背景介紹………………………………………………………3
1.2 動機與目的……………………………………………………5
第2章 基因調控………………………………………………………9
2.1 基因……………………………………………………………10
2.1.1 去氧核糖核酸………………………………………11
2.1.2 核糖核酸……………………………………………13
2.1.3 蛋白質………………………………………………16
2.1.4 蛋白質的合成………………………………………17
2.2 基因調控………………………………………………………19
第3章 類神經網路……………………………………………………26
3.1 類神經單元……………………………………………………27
3.2 Perceptron……………………………………………………30
3.3 神經組…………………………………………………………32
3.3.1 包含辨識神經組………………………………………32
3.3.2不包含辨識神經組……………………………………35
3.4 合取神經組……………………………………………………37
3.5 析取神經組……………………………………………………41
第4章 藉由遞迴類神經網路表示的基因調控網路…………………45
4.1 符號表示法……………………………………………………46
4.2 基因調控網路…………………………………………………47
4.3 藉由遞迴類神經網路建構基因調控網路……………………51
4.4 癌症與基因調控………………………………………………59
4.4.1 致癌基因和抑癌基因…………………………………59
4.4.2 致癌基因的活化………………………………………60
4.4.3 癌症的分期……………………………………………61
4.5 基因調控網路例子的探索……………………………………65
第5章 結論……………………………………………………………72
參考文獻………………………………………………………………74

行政院衛生署(2002,5月11日)‧民國90年國人主要死因統計資料:台灣地區主要死亡原因‧衛生統計資訊網‧取自http://www.doh.gov.tw/statistic/data/公佈欄資料檔/90死因/台灣死因90.xls
吳國瑞(1993)‧真核細胞之基因調控傳譯因子與正常組織發育及癌症形成之關係‧當代醫學,20(4),pp. 299-304。
林能傑(1997)‧基因治療(針對ADA及癌症)‧台灣醫界,40(5),pp. 10-16。
林绣茹(1996)‧分子生物學的基礎和技術導論‧內科學誌,7,pp. 197-203。
邱世欣、張泰琮(1996)‧基因技術在基因異常疾病的臨床診斷及應用‧內科學誌,7,pp. 208-215。
莊萬龍、余明隆、張文宇(1996)‧分子生物學在消化系醫學上之應用‧內科學誌,7,pp. 238-246。
許昌泰(1996)‧癌症基因研究現狀‧當代醫學,23(10),pp. 827-830。
彭汪嘉康(1997)‧基因治療,何去?何從?‧內科學誌,8,pp. 1-5。
黃麗華(2001)‧癌症的基因治療‧台灣醫學,5(1),pp. 65-73。
楊政杰、高壽延、張哲壽(1997)‧牙醫學雜誌,17(2),pp. 105-110。
趙祖怡(1993)‧癌症的基因治療‧國防醫學,16(6),pp. 584-587。
Akutsu, T., Kuhara S., Maruyama, O., Miyano, S., “A System for Identifying Genetic Networks from Gene Expression Patterns Produced by Gene Disruptions and Overexpressions,” Genome Informatics 9, pp. 151-160, 1998.
Akutsu, T., Miyano, S. and Kuhara, S., “Identification of Genetic Networks from a Small Number of Gene Expression Patterns Under the Boolean Network Model,” Pacific Symposium on Biocomputing 4, pp. 17-28, 1999.
Campbell, K. Mary, “Biochemistry: 3rd ed.”, USA: John Vondeling, 1999.
Chen, C. and Honavar, V., “A Neural Architecture for Content as well as Address-Based Storage and Recall: Theory and Applications,” Connection Science, vol. 7, no. 3 & 4, pp.281-300, 1995.
Chen, C. and Honavar, V., “Neural Network Automata,” Proceedings of World Congress on Neural Networks, vol. 4, pp. 470-477, San Diego, June 1994.
Chen, C., “Neural Architectures for Database Query Processing, Syntax Analysis, Knowledge Representation, and Inference, Dissertation,” Iowa State University, Iowa, USA.
Chen, T., He, H. L. and Church, G. M., “Modeling Gene Expression with Differential Equations,” Pacific Symposium on Biocomputing 4, pp. 29-40, 1999.
Goss, P. J. E. and Peccound, J., “Quantitative Modelling of Stochastic Systems in Molecular Biology by Using Stochastic Petric Nets,” PNAS, 95, pp. 6750-6755, 1998.
Gupta, M. M. and Knopf, G. K., “Neuro-Vision Systems: A Tutorial,” in: Neuro-Vision Systems:Principles and Applications, Gupta, M. and Knopf, G. (Ed.), pp. 1-34, IEEE Press, New York, 1994.
Hagan, Martin T., Demuth, Howard B., and Beale Mark, “Neural Network Design”, Boston: PWS Publishing Company, 1995.
Hartemink, A. J. et al., “Using Graphical Models and Genomic Expression Data to Statistically Validate Models of Genetic Regulatory Networks,” Pacific Symposium on Biocomputing 6, pp. 422-433, 2001.
Horowitz, E., Sahni, S., Anderson-Freed, S., “Fundamentals of data structures in C”, New York: Computer Science Press, 1993.
Ideker, T. E., Thorsson, V. and Karp, R. M., “Discovery of Regulatory Interactions through Perturbation: Inference and Experimental Design,” Pacific Symposium on Biocomputing 5, pp. 302-313, 2000.
Kauffmann, S. A., “The Origins of Order, Self-Organization and Selection in Evolution,” Oxford University Press, 1993.
Liang, S., Fuhrman, S. and Somogyi, R., “REVEAL, A General Reverse Engineering Algorithm for Inference of Genetic Network Architecture,” Pacific Symposium on Biocomputing 3, pp. 18-29, 1998.
Lippmann, R. P., “An Introduction to Computing with Neural Nets,” IEEE ASSP Magazine, pp. 4-22, Apr. 1987.
Matsuno, H. et al., “Hybrid Petri Net Representation of Gene Regulatory Network,” Pacific Symposium on Biocomputing 5, pp. 338-349, 2000.
McAdams, H.H., Arkin, A. (1997), “Stochastic Mechanisms in Gene Expression,” Proc. Natl. Acad. Sci., USA, 94:814-819.
Minsky, M., “Computation: Finite and Infinite Machines,” Prentice Hall, Englewood Cliffs, NJ, 1967.
Neapolitan, R. E., Naimipour, K. “Foundations of algorithms : using C++ pseudocode: 2nd ed.”, USA: Jones and Bartlett Publishers, 1998.
Silvescu, A. and Honavar, V., “Temporal Boolean Network Models of Genetic Networks and Their Inference from Gene Expression Time Series,” Complex Systems. In press, pp.1-11, 2000.
Somogyi, R. and Sniegoski, C. A., “Modeling the Complexity of Genetic Networks: Understanding Multigenic and Pleitropic Regulation,” Complexity 1 (6), pp. 45-63, 1996.
Weaver, D. C., Workman, C. T., and Stormo, G. D., “Modeling Regulatory Networks with Weight Matrices,” Pacific Symposium on Biocomputing 4, pp. 112-123, 1999.
Zembutsu H., Ohnishi Y., Tsunoda T., Furukawa Y., Katagiri T., Ueyama Y., Tamaoki N., Nomura T., Kitahara O., Yanagawa R., Hirata K., and Nakamura Y., “Genome-wide cDNA Microarray Screening to Correlate Gene Expression Profiles with Sensitivity of 85 Human Cancer Xenografts to Anticancer Drugs,” CANCER RESEARCH 62, 518-527, 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top