跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李維洋
研究生(外文):Wei-Yang Li
論文名稱:銪摻雜氧化銦鋅薄膜電晶體製備之結構與電性研究
論文名稱(外文):Structural and electrical properties of the europium-doped indium zinc oxide thin film transistors
指導教授:丁初稷
指導教授(外文):Chu-Chi Ting
口試委員:林祐仲朱聖緣張國恩
口試委員(外文):Yow-Jon LinSheng-Yuan ChuGuo-En Chang
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:88
中文關鍵詞:薄膜電晶體溶膠-凝膠法
外文關鍵詞:Thin Film Transistorssol-gel methodEuropium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
使用溶膠-凝膠法製備銪摻雜銦鋅氧化物(EuInZnO ,EIZO)薄膜電晶體,為了分析Eu3+在溶液製程非晶EZIO薄膜電晶體的影響,使用霍爾量測、穿透光譜、X-ray光電子能譜儀、原子力顯微鏡、低掠射角X光繞射儀等儀器進行分析,實驗結果為IZO系統中Eu3+增加,可抑制載子產生,適量調變Eu3+濃度可有更小的晶粒與平滑表面粗糙度可改善EIZO薄膜電晶體的載子遷移率、開關電流比、次臨界擺幅。Eu3+離子會影響金屬與氧的鍵結並且使EZIO薄膜的能隙增大,銪摻雜銦鋅氧化物薄膜電晶體最佳條件為Eu3+ 13 mol%, 500C, 1 h,其特性達到開關電流比為1.07×106、飽和區載子移動率為1.23 cm2V-1s-1、臨界電壓為3.28 V、次臨界擺幅為2.28V/decade。
In this study, we propose the fabrication of amorphous Europium doped InZnO (EIZO) thin film transistors (TFTs) using a so-gel method. To analyze the effects of Eu3+ incorporation on solution-processed amorphous EIZO TFTs, Hall measurements, transmittance measurements, X-ray photonelectron spectroscopy, Atomic Force Microscope and Grazing Incident X-ray Diffraction were performed. The experimental results showed that the increased addition of Eu3+ to the IZO system resulted in suppression of carrier generation. Small grains and smooth morphology by varying the Eu content lead to an improvement of the mobility, on-off current ratio, and subthreshold swing. The Eu3+ ions additive affected the metal-oxygen-bond and made the band gap of EIZO films wider. At optimized conditions (13 mol%, 500C, 1 h) for EIZO TFTs, we achieved a saturation mobility of 1.23 cm2V-1s-1, and on/off ratio of 1.07×106, a threshold voltage of 3.28 V, and a subthreshold swing of 2.28 V/decade.
目錄
摘要 I
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2研究動機 4
1-3 論文架構 5
第二章 文獻回顧及原理介紹 6
2-1非晶相氧化物半導體(Amorphous Oxide Semiconductor, AOS) 6
2-1-1非結晶相氧化物半導體簡介 6
2-1-2 氧化銦鋅為基礎之四元化合物薄膜電晶體文獻整理 7
2-2薄膜沉積法 9
2-2-1 化學氣相沉積法 9
2-2-2 物理氣相沉積法 10
2-2-3 溶膠-凝膠法 11
2-3 溶膠-凝膠法原理 11
2-4 溶膠-凝膠法製作薄膜方法 13
2-4-1 噴霧塗佈法 13
2-4-2 浸泡塗佈法 14
2-4-3 噴墨印刷法 15
2-4-4 旋轉塗佈法 15
2-5薄膜電晶體概論 16
2-5-1薄膜電晶體元件構造 16
2-5-2 薄膜電晶體工作原理 17
2-5-3 薄膜電晶體的重要參數 19
第三章 實驗方法與步驟 28
3-1 實驗規劃 28
3-2 實驗藥品 29
3-3製程使用儀器 30
3-3-1製程使用儀器介紹 30
3-4 材料分析儀器介紹 32
3-4-1 電性量測設備 32
3-4-3 紫外-可見光光譜儀 (UV-Visible Spectrophotometer) 35
3-4-4 原子力顯微鏡 (Atomic Force Microscope, AFM) 36
3-4-5 低掠射角X光繞射 (Grazing Incident X-ray Diffraction, GI-XRD) 37
3-4-6 X-ray光電子能譜儀 (X-ray photonelectron spectroscopy, XPS) 38
3-5 EIZO薄膜製備 39
3-5-1 EIZO溶液配置 39
3-5-2清洗基板 40
3-5-3 EIZO薄膜製備 41
3-5-4薄膜電晶體結構與製作流程 42
第四章 結果與討論 53
4-1不同銪摻雜濃度於氧化銦鋅薄膜電晶體特性 53
4-2霍爾效應 (Hall effect) 55
4-3紫外-可見光光譜儀 (UV-Visible Spectrophotometer) 57
4-4原子力顯微鏡 (Atomic Force Microscope, AFM) 58
4-5低掠射角X光繞射 (Grazing Incident X-ray Diffraction, GI-XRD) 59
4-6 X-ray光電子能譜儀 (X-ray photonelectron spectroscopy, XPS) 59
第五章 結論與未來展望 74
5-1 結論 74
5-2 未來展望 75
參考文獻 77

[1] Y. Taur and H. T. Ning, Fundamentals of Modern VLSI Devices, Cambridge Univ. Press, New York, (1988).
[2] Y. Kuo, Thin Film Transistors: Materials and Processes. Kluwer Academic, Dordrecht, 2004.
[3] J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, J. M. Kim, IEEE. Electron. Dev. Lett. 29, 1309 (2008).
[4] C. D. Dimitrakopoulos and D. J. Mascaro, IBM J. Res. Dev., 45,11 (2001).
[5] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, R. Martins, Adv. Mater. 17, 590 (2005).
[6] S. J. Lim, S. J. Kwon, H. Kim, J. S. Park, Appl. Phys. Lett. 91, 18 (2007).
[7] K. Nomura, H. Ohta, A Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature. 432, 488 (2004).
[8] G. H. Kim, W. H. Jeong and H. J. Kim, physica status solidi (a) 207, 1677 (2010).
[9] L. Pauling, Nature of the Chemical Bond (3rd Edn.), Ithaca, NY: Cornell University Press, 1960
[10] G. Milazzo, S. Caroli, and V. K. Sharma, Tables of Standard Electrode Potentials, Wiley, Chichester, 1978
[11] K. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. mater. 10, 45 (2010).
[12] D. H. Yoon, S. J. Kim, W. H. Jeong, D. L. Kim, Y. S. Rim and H. J. Kim, Journal of Crystal Growth 326, 171 (2011).
[13] D. N. Kim, D. L. Kim, G. H. Kim, S. J. Kim, Y. S. Rim, W. H. Jeong and H. J. Kim, Appl. Phys. Lett. 97, 192105 (2010).
[14] W. H. Jeong, G. H. Kim, H. S. Shin, B. D. Ahn, H. J. Kim, M. K. Ryu, K. B. Park, J. B. Seon and S. Y. Lee, Appl. Phys. Lett. 96, 093503 (2010).
[15] A. C. Jones, M. L. Hitchman, R. Soc. Chem. 1 (2009)
[16] US patent 6472014 B1, Uniform Surface Texturing for PVD/CVD Hardware, Novellus Systems, Inc. (San Jose, CA) (2002)
[17] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing (William Andrw Inc., 1998), P.1.
[18] L. Nikolic, L. Radonjic, Cramics International 24, 547 (1998).
[19] V. K. Parashar, A. Sayah, M, Pfeffer, F. Schoch, J. Gobrecht, M. A. M. Gijs, Microelectron. Eng. 67, 710 (2003).
[20] C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, 1990), P.1.
[21] M. A. Aegerte, A. Reich, D. Ganz, G. Gasparro, J. Putz, T. J. Krajewski, Non-Cryst. Solids. 218, 123 (1997).
[22] C. J. Brinker, and G. W. Scherer, Sol-Gel science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, 1990), P.787.
[23] L. E. Scriven, Better ceramics through chemistry III (Materials research society, 1988), P.718.
[24] D.Burnside, C. Macosko, L. Scriven, J. Imaging Technol. 13, 122 (1987).
[25] J. T. Wallmark , H. Johnson , Field-Effect Transistors (Prentice-Hall , Englewood Cliffs, NJ), 1966.
[26] C. R. Kagan, and P. W. E. Andry, Thin Film Transistors, Dekker, (New York, 2003), P 85.
[27] Y. Qijun, L. Dejie, Phys. Stat. Sol. 205, 389 (2008).
[28] G. B. Gonzalez, J. B. Cohen, J. H. Hwang, T. O. Mason, J. Appl. Phys. 89, 2550 (2001).
[29] L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, T. J. Marks, Nat. Mater. 5, 893 (2006).
[30] F. O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka,H. Matsui, M. Motoyama, Appl. Phys. Lett. 74, 20 (1999).
[31] T. H. Jeong, S. J. Kim, D. H. Yoon, W. H. Jeong, D. L. Kim, H. S. Lim and H. J. Kim, Japanese Journal of Applied Physics. 50, 070202 (2011).
[32] B. Kumar, H. Gong and R. Akkipeddi, J. Appl. Phys. 97, 063706 (2005).
[33] R. Martins, P. Barquinha, I. Ferreira, L. Pereira, G. Gonçalves, and E. Fortunato, J. Appl. Phys. 101, 044505 (2007).
[34] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films. 486, 38 (2005).
[35] M.P. Singh, K. Shalini, S.A. Shivashankar, G.C. Deepak, N. Bhat, T. Shripathi, Mater. Chem. Phys. 110, 337 (2008).
[36] R.L. Weiher, J. Appl. Phys. 37, 299 (1966).
[37] A. Walsh, J. Da Silva, S.-H. Wei, C. Körber, A. Klein, L. Piper, A. DeMasi, K. Smith, G. Panaccione, P. Torelli, D. Payne, A. Bourlange, and R. Egdell, Phys. Rev. Lett. 100 (2008).
[38] X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, Nano. Letter. 8, 1219 (2008).
[39] M. X. Qiu, Z. Z. Ye, H. P. He, Y. Z. Zhang, X. Q. Gu, L. P. Zhu, and B. H. Zhao, Applied Physics Letters. 90, 182116 (2007).
[40] D. Maestre, A. Cremades, J. Piqueras, and L. Gregoratti, J. Appl. Phys. 103, 093531 (2008).
[41] X. J. Yang, X. Y. Miao, X. L. Xu, C. M. Xu, J. Xu, and H. T. Liu, Opt. Mater. 27, 1602 (2005).
[42] F. Mercier, C. Alliot, L. Bion, N. Thromat, P. Toulhoat, J. Electron Spectrosc. Relat. Phenom. 150, 21 (2006).
[43] X. J. Yang, X. Y. Miao, X. L. Xu, C. M. Xu, J. Xu, and H. T. Liu, Opt. Mater. 27, 1602 (2005).
[44] B. Kumar, H. Gong, and R. Akkipeddi, J. Appl. Phys. 97, 063706 (2005).
[45] D. Majumdar, and D. Chatterjee, J. Appl. Phys. 70, 988 (1991).
[46] You Seung Rim, Dong Lim Kim, Woong Hee Jeong, and Hyun Jae Kim, Appl. Phys. Lett. 97, 233502 (2010).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top