跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.29) 您好!臺灣時間:2025/11/26 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李光宇
研究生(外文):Guang Yeu Lee
論文名稱:損耗性物料之存貨管理政策─考慮商品需求變動與部份補貨之經濟批量模式研究
論文名稱(外文):An EOQ model for deteriorating items with timevarying demand and partialbacklogging
指導教授:林清河林清河引用關係
指導教授(外文):Lin,Chin-ho
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業管理學系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:73
中文關鍵詞:損耗性物料經濟訂購批量模式部分缺貨待補
外文關鍵詞:deteriorating itemsEOQ modelpartialbacklogging
相關次數:
  • 被引用被引用:17
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
存貨管制為現代企業管理中生產計畫的重要課題。而在近年來,有關於損耗性物料的存貨管制問題普遍受到重視。由於這些物料和產品具有一旦納入儲存之後,其品質功效即開始產生損耗退化的效應,因此往往使得廠商在擬定存貨管制策略的困難度大為提高。
但現有的損耗性物料存貨模式,多數僅考慮損耗率為固定比率的情況,面對各種物料不同的損耗現象已不敷所需。因此,本研究的研究目的在於建構一套適用範圍廣且較其他現有模式更貼近實際情況的損耗性物料存貨模式。而在模式的建構方面,本研究是以損耗率為韋伯分配之損耗性物料為研究對象,至於物料的需求變動則是涵蓋了目前時下研究所討論的線性遞增或遞減以及指數遞增或遞減等四種需求形態,同時在補貨週期的假設方面,也從各個補貨週期固定一致的假設放寬為可彈性調整。除此之外,對於物料短缺的處理方式,本研究採用「部份欠撥補貨」(partial backlogging)的觀念。將現實生活中「顧客因遭逢產品短缺而可能放棄購買」的因素納入模式考慮,使得本模式更為完整。
然而,在針對諸多限制條件放寬之後,模式求解計算的複雜度也跟著大為提高。為此,本研究依照模式滿足總成本函數最小之必要條件具有「在給定初始值 後,其餘 便可相繼遞迴求解」的特性,提出一套求解步驟,藉由數學軟體Matlab的幫助,以找出滿足總成本最小之補貨時機以及其相對補貨量。
第一章緒論 1
1.1研究動機 2
1.2研究目的 5
1.3研究方法 6
1.4研究架構與流程 7
第二章文獻探討 8
2.1存貨模式概述 8
2.2存貨模式與存貨問題分類 9
2.2.1存貨模式的分類 9
2.2.2存貨問題的分類 10
2.3損耗性物料介紹 13
2.3.1損耗的定義 13
2.3.2損耗性物料的特性 13
2.3.3損耗性產品的分類 14
2.4相關存貨模式文獻回顧 16
2.4.1一般性物料之存貨訂購模式探討 16
2.4.2損耗性物料之存貨訂購模式探討 18
第三章數學模式建構 29
3.1模式基本假設 29
3.2符號定義說明 31
3.3模式推導 35
第四章數學實例演算 49
第五章結論與未來研究方向 54
5.1結論 54
5.2未來研究方向 55
參考文獻 57
附錄:Matlab電腦程式碼範例 63
1. Abad, P. L. (1996), “Optimal pricing and lot-sizing under conditions of perishability and partial backordering”, Management Science, Vol.42, No.8, pp.1093-1104.
2. Aggarwal, S. C. (1974), “A review of current inventory theory and its applications”, International Journal of Production Research, Vol.20, No.4, pp.443-482.
3. Aggarwal, S. P. (1979), “A note on an order level lot size inventory model for deteriorating items by Y.K. Shah”, AIIE Transactions, Vol.11, No.4, pp.344-346.
4. Aggarwal, S. P. and C. K. Jaggi (1989), “Ordering policy for decaying inventory”, International Journal of Systems Science, Vol.20, No.1, pp.151-155.
5. Aggarwal, S. P. and C. K. Jaggi (1995), “Ordering policies of deteriorating items under permissible delay in payment”, Journal of the Operational Research Society, Vol.46, No.5, pp.658-662.
6. Bahari-Kashani, H. (1989), “Replenishment schedule for deteriorating items with time proportional demand”, Journal of the Operational Research Society, Vol. 40, No.1, pp.75-81.
7. Benkherouf, L. (1995), “On an inventory model with deteriorating items and decreasing time-varying demand and shortages”, European Journal of Operational Research, Vol.86, Iss.2, pp.293-299.
8. Benkherouf, L. and M. G. Mahmoud (1996), “On an inventory model for deteriorating items with increasing time-varying demand and shortages”, Journal of the Operational Research Society, Vol. 47, No.1, pp.188-200.
9. Berrotoni, J. N. (1962), “Practical applications of Weibull distribution”, ASQC Tech. Conference Transaction, pp.303-323.
10. Bose, S., A., Goswami and K .S. Chaudhuri (1995), “An EOQ model for deteriorating items with linear time-dependent demand rate and shortage under inflation and time discounting”, Journal of the the Operational Reasearch Society, Vol.46, No.6, pp.771-782.
11. Chakrabarti, T. and K. S. Chaudhuri (1997), “An EOQ model for deteriorating items with a linear trend in demand and shortages in all cycles”, International Journal of Production Economics, Vol.49, No.3, pp.205-214.
12. Chakrabarty, T. (1998), “An EOQ model for items with Weibull distribution deterioration. Shortages and trended demand: An extension of Phillp’s model”, Computers & Operations Research, Vol.25, No.7, pp.649-657.
13. Chang, H. J. and C. Y. Dye (1999a), “An EOQ model for deteriorating items with time varying demand and partial backlogging”, Journal of the Operational Research Society, Vol.50, No.10, pp.1176-1182.
14. Chang, H. J. and C. Y. Dye (1999b), “An EOQ model for deteriorating items with exponential time-varying demand and partial backlogging”, Management Sciences, Vol.10, No.1, pp.1-11.
15. Chen, J. M. (1998), “An inventory model for deteriorating items with time-proportional demand and shortahes under inflation and time discounting”, International Journal of Production Economics, Vol.55, No.1, pp.21-30.
16. Cheng, K. J. (1997), “An algorithm to determine the EOQ for deteriorating items with shortage and a linear trend in demand”, International Journal of Production Economics, Vol.51, No.3, pp.215-221.
17. Chung, K. J. and P. S. Ting (1993), “A heuristic for replenishment of deteriorating items with a linear trend in demand”, Journal of the Operational Research Society, Vol. 44, No.12, pp.1235-1241.
18. Chung, K. J. and S. F. Tsai (1997), “An algorithm to determine the EOQ for deterioration items with shortage and a linear trend in demand”, International Journal of Production Economics, Vol. 51, No.1, pp.215-221.
19. Covert, R. P. and G. C. Philip (1973), “An EOQ model for items with Weibull distribution deterioration”, AIIE Transactions, Vol.5, No.4, pp.323-326.
20. Dave, U. and L. K. Patel (1981) “(T, Si) policy inventory model for deteriorating items with time proportional demand”, Journal of the Operational Research Society, Vol.32, No.1, pp.137-142.
21. Dave, U. (1989a), “On a heuristic inventory replenishment rule for items with a linearly increasing demand incorporating shortages”, Journal of Operational Research Society, Vol.40, No.6, pp.827-830.
22. Dave, U. (1989b), “A deterministic lot-size inventory model with shortage and a linear trend in demand”, Naval Research Logistics, Vol.36, No.4, pp.507-514.
23. Deb, M. and K. Chaudhuri (1987), “A note on the heuristic for replenishment of trended inventories considering shortages”, Journal of the Operational Research Society, Vol.38, No.5, pp.459-463.
24. Donaldson, W. A. (1977), “Inventory replenishment policy for a linear trend in demand an analytical solution”, Operational Research, Vol.28, No.3, pp.663-670.
25. Engelhardt, M. (1988), “Weibull Processes”, In Encyclopedia of Statistical Sciences, Vol.9, pp557-561, John Wiley, New York.
26. Ghare, P. M. and G. F. Schrader (1963), “A model for exponential decaying inventory,” Journal of Industrial Engineering, Vol.14, No.5, pp.238-243.
27. Giri, B. C., A. Goswami and K. S. Chaudhuri (1996), “An EOQ model for deteriorating items with time varying demand and costs”, Journal of the Operational Research Society, Vol.47, No.11, pp.1398-1405.
28. Goh, C. H., B. S. Greenberg and H. Matsuo (1993), “Two-stage perishable inventory models”, Management Science, Vol.39, No.5, pp.633-649.
29. Goh, M. (1994), “EOQ models with general demand and holding cost functions”, European Journal of Operational Research, Vol.73, Iss.1, pp.50-54.
30. Goyal, S. K. (1987), “Economic ordering policy for deteriorating items over an infinite time horizon”, European Journal of the Operational Research, Vol.28, Iss.3, pp.298-301.
31. Goyal, S. K. (1988), “A heuristic for replenishment of trended inventories considering shortages”, Journal of the Operational Research Society, Vol.39, No.6, pp.885-887.
32. Goyal, S. K., D. Morin and F. Nebebe (1992), “The finite horizon trended inventory replenishment problem with shortages”, Journal of the Operational Research Society, Vol.43, No.12, pp.1173-1178.
33. Goswami, A. and K. S. Chaudhuri (1991a), “EOQ model for an inventory with a linear trend in demand and finite rate of replenishment considering shortages”, International Journal of Systems Science, No.22, pp.181-187.
34. Goswami, A. and K. S. Chaudhuri (1991b), “An EOQ model for deteriorating items with shortages and a linear trend in demand,” Journal of the Operational Research Society, Vol. 42, No.12, pp.1105-1110.
35. Hariga, M. (1994), “The inventory lot-sizeing problem with continuous time-varying demand and shortages”, Journal of the Operational Research Society, Vol. 45, No.7, pp.1105-1110.
36. Hariga, M. and A. Al-Alyan (1997), “A lot sizing heuristic for deteriorating items with shortages in growing and declining markets”, Computers Operation Research, Vol.24, N0.11, pp.1075-1083.
37. Hariga, M. A. and L. Benkherouf (1994), “Optimal and heuristic inventory replenishment models for deteriorating items with exponential time-varying demand”, European Journal of the Operational Research, Vol.79, No.1, pp.123-137.
38. Hariga, M. (1995), “An EOQ model for deteriorating items with shortages and time-varying demand”, Journal of the Operational Research Society, Vol.46, No.3, pp.398-404.
39. Hariga, M. (1996), “Optimal EOQ models for deteriorating items with time-varying demand”, Journal of the Operational Research Society, Vol.47, No.10, pp.1228-1246.
40. Heng, K. J., J. Labban and R. J. Linn (1991), “An order-level lot-size inventory model for deteriorating items in a declining market”, Computer Industrial Engineering, Vol.20, Iss.2, pp.187-197.
41. Hollier, R. H. and K. L. Mak (1983), “Inventory replenishment policies for deteriorating items in a declining market’, International Journal of Production Research, Vol. 21, No.6, pp.813-826.
42. J.Douglas, F. and B. Ricard (1998), Numerical Methods, second edition, Pacific Grove, USA, Brooks/Cole Publishing Company.
43. Jamal, A. M. M., B. R. Sarker and S. Sarker (1997), “An Ordering Policy for Deteriorating Items with Allowable Shortage and Permissible Delay in Payment”, Journal of the Operational Research Society 1997, Vol. 48, No.8, 826-833.
44. Jalan, A. K., R. R. Giri and K. S. Chaudhuri (1996), “EOQ model for items with Weibull distribution deterioration, shortages and trended demand”, International Journal of Systems Science, Vol.27, No.8, pp.851-855.
45. Kim, D. H. (1995), “A heuristic for replenishment of deterorating items with a linear trend in demand”, International Journal of Production Economics, Vol.39, No.3, pp.265-270.
46. Lin, C., B. Tan and W. C. Lee (1999), “An EOQ model for deteriorating items with time-varying demand and shortages”, International Journal of Systems Sciences, Vol.31, No.3, pp.391-400.
47. Lin, C., B. Tan and W. C. Lee (2000), “An EOQ model for weibull deteriorating items with decreasing demand, shortage and partial backordered”, working paper.
48. Mak, K. L. (1982), “A production lot size inventory model for deteriorating items”, Computer Industrial Engineering, Vol.6, No.2, pp.309-317.
49. Mitra, A., J. F. Cox and R. R. Jesse (1984), “A note on determining order quantities with a linear trend in demand”, Journal of the Operational Research Society, Vol.35, No.2, pp.141-144.
50. Murdeshwar, T. M. (1988), “Inventory replenishment policy for linearly increasing demand considering shortages-an optimal solution” Journal of the Operational Research Society, Vol.39, No.7, pp687-692.
51. Nahmias, S. (1982), “Perishable inventory theory: a review”, Operations Research, Vol.30, No.4, pp.680-708.
52. Ousteryoung, J. S., D. E. McCarty and W. J. Reinhart (1986), “Use of EOQ model for inventory analysis”Production Inventory Management, Vol.27, No.3, pp.39-46.
53. Pal, S., A. Goswami and K. S. Chaudhuri (1993), “A deterministic inventory model for deteriorating items with stock-dependent demand rate”, International Journal of Production Economics, Vol.32, No.3, pp291-299.
54. Philip, G. C. (1974), “A generalized EOQ model for items with Weibull distribution deterioration”, AIIE Transactions, Vol.5, No.4, pp.159-162.
55. Prasad, S. (1994), “Classification of inventory models and systems”, International Journal of Production Economics, Vol. 34, No.2, pp.209-222.
56. Raafat, F. (1991), “Survey of literature on continuously deteriorating inventory model”, Journal of the Operational Research Society, Vol.42, No.1, pp.27-37.
57. Raafat, F., P. M. Wolfe and H. K. Eldin (1991), “An inventory model for deteriorating items”, Computer Industrial Engineering, Vol.20, Iss.1, pp.89-94.
58. Ritchie, E. (1984), “The EOQ for linear increasing demand: a simple optimal solution”, Journal of the Operational Research Society, Vol.35, No.10, pp.949-952.
59. Sachan, R. S. (1984), “On (T, Si) policy inventory model for deteriorating items with time proportional demand”, Journal of the Operational Research Society, Vol.35, No.11, pp.1013-1119.
60. Shah, Y. K. (1976), “An order-level lot-size inventory model for deterioration items”, AIIE Transactions, Vol.9, No.1, pp.108-112.
61. Silver, E. A. and H. C. Meal (1969), “A simple modification of the EOQ for the case of a varying demand rate”, Production Inventory Management, Vol.10, No.4, pp.52-65.
62. Silver, E. A. and H. C. Meal (1973), “A heuristic for selecting lot size quantities for the case of a deterministic time varying demand rate and discrete opportunities for replenishment”, Production Inventory Management, Vol. 14, No.1, pp.64-74.
63. Silver, E. A. (1979), “A simple inventory decision rule for a linear trend in demand”, Journal of the Operational Research Society, Vol.30, No.1, pp.71-75.
64. Silver, E. A. (1981), “Operations research in inventory management: a review and critique”, Operations Research, Vol.29, No.4, pp.628-645.
65. Tadikamalla, P. R. (1978), “An EOQ inventory model for items with Gamma distributed deterioration,” AIIE Transactions, Vol. 10, No.1, pp.100-103.
66. Teng, J. T. (1994), “A note on inventory for replenishment policy for increasing demand, “Journal of the Operational Research Society, Vol.45, No.11, pp.1335-1337.
67. Wagner, H. M. and T. N. Whitin (1958), “Dynamic version of the economic lot size model”, Management Science, Vol.5, No.1, pp89-96.
68. Webster’s Encyclopedic Unabridged Dictionary of the English Language (1989), New York, New York, Portland House.
69. Wee, H. M. (1995), “A deterministic lot-size inventory model for deteriorating items with shortages and a declining market”, Computers and Operations Research, Vol. 22, No.3, pp.345-356.
70. Wu, J.W., C. Lin, B. Tan and W. C. Lee (1998), “An EOQ inventory model with time varying demand and weibull deterioration with shortage”, International Journal of Systems Science, Vol.31, No.3, pp.391-400.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top