|
1. Abad, P. L. (1996), “Optimal pricing and lot-sizing under conditions of perishability and partial backordering”, Management Science, Vol.42, No.8, pp.1093-1104. 2. Aggarwal, S. C. (1974), “A review of current inventory theory and its applications”, International Journal of Production Research, Vol.20, No.4, pp.443-482. 3. Aggarwal, S. P. (1979), “A note on an order level lot size inventory model for deteriorating items by Y.K. Shah”, AIIE Transactions, Vol.11, No.4, pp.344-346. 4. Aggarwal, S. P. and C. K. Jaggi (1989), “Ordering policy for decaying inventory”, International Journal of Systems Science, Vol.20, No.1, pp.151-155. 5. Aggarwal, S. P. and C. K. Jaggi (1995), “Ordering policies of deteriorating items under permissible delay in payment”, Journal of the Operational Research Society, Vol.46, No.5, pp.658-662. 6. Bahari-Kashani, H. (1989), “Replenishment schedule for deteriorating items with time proportional demand”, Journal of the Operational Research Society, Vol. 40, No.1, pp.75-81. 7. Benkherouf, L. (1995), “On an inventory model with deteriorating items and decreasing time-varying demand and shortages”, European Journal of Operational Research, Vol.86, Iss.2, pp.293-299. 8. Benkherouf, L. and M. G. Mahmoud (1996), “On an inventory model for deteriorating items with increasing time-varying demand and shortages”, Journal of the Operational Research Society, Vol. 47, No.1, pp.188-200. 9. Berrotoni, J. N. (1962), “Practical applications of Weibull distribution”, ASQC Tech. Conference Transaction, pp.303-323. 10. Bose, S., A., Goswami and K .S. Chaudhuri (1995), “An EOQ model for deteriorating items with linear time-dependent demand rate and shortage under inflation and time discounting”, Journal of the the Operational Reasearch Society, Vol.46, No.6, pp.771-782. 11. Chakrabarti, T. and K. S. Chaudhuri (1997), “An EOQ model for deteriorating items with a linear trend in demand and shortages in all cycles”, International Journal of Production Economics, Vol.49, No.3, pp.205-214. 12. Chakrabarty, T. (1998), “An EOQ model for items with Weibull distribution deterioration. Shortages and trended demand: An extension of Phillp’s model”, Computers & Operations Research, Vol.25, No.7, pp.649-657. 13. Chang, H. J. and C. Y. Dye (1999a), “An EOQ model for deteriorating items with time varying demand and partial backlogging”, Journal of the Operational Research Society, Vol.50, No.10, pp.1176-1182. 14. Chang, H. J. and C. Y. Dye (1999b), “An EOQ model for deteriorating items with exponential time-varying demand and partial backlogging”, Management Sciences, Vol.10, No.1, pp.1-11. 15. Chen, J. M. (1998), “An inventory model for deteriorating items with time-proportional demand and shortahes under inflation and time discounting”, International Journal of Production Economics, Vol.55, No.1, pp.21-30. 16. Cheng, K. J. (1997), “An algorithm to determine the EOQ for deteriorating items with shortage and a linear trend in demand”, International Journal of Production Economics, Vol.51, No.3, pp.215-221. 17. Chung, K. J. and P. S. Ting (1993), “A heuristic for replenishment of deteriorating items with a linear trend in demand”, Journal of the Operational Research Society, Vol. 44, No.12, pp.1235-1241. 18. Chung, K. J. and S. F. Tsai (1997), “An algorithm to determine the EOQ for deterioration items with shortage and a linear trend in demand”, International Journal of Production Economics, Vol. 51, No.1, pp.215-221. 19. Covert, R. P. and G. C. Philip (1973), “An EOQ model for items with Weibull distribution deterioration”, AIIE Transactions, Vol.5, No.4, pp.323-326. 20. Dave, U. and L. K. Patel (1981) “(T, Si) policy inventory model for deteriorating items with time proportional demand”, Journal of the Operational Research Society, Vol.32, No.1, pp.137-142. 21. Dave, U. (1989a), “On a heuristic inventory replenishment rule for items with a linearly increasing demand incorporating shortages”, Journal of Operational Research Society, Vol.40, No.6, pp.827-830. 22. Dave, U. (1989b), “A deterministic lot-size inventory model with shortage and a linear trend in demand”, Naval Research Logistics, Vol.36, No.4, pp.507-514. 23. Deb, M. and K. Chaudhuri (1987), “A note on the heuristic for replenishment of trended inventories considering shortages”, Journal of the Operational Research Society, Vol.38, No.5, pp.459-463. 24. Donaldson, W. A. (1977), “Inventory replenishment policy for a linear trend in demand an analytical solution”, Operational Research, Vol.28, No.3, pp.663-670. 25. Engelhardt, M. (1988), “Weibull Processes”, In Encyclopedia of Statistical Sciences, Vol.9, pp557-561, John Wiley, New York. 26. Ghare, P. M. and G. F. Schrader (1963), “A model for exponential decaying inventory,” Journal of Industrial Engineering, Vol.14, No.5, pp.238-243. 27. Giri, B. C., A. Goswami and K. S. Chaudhuri (1996), “An EOQ model for deteriorating items with time varying demand and costs”, Journal of the Operational Research Society, Vol.47, No.11, pp.1398-1405. 28. Goh, C. H., B. S. Greenberg and H. Matsuo (1993), “Two-stage perishable inventory models”, Management Science, Vol.39, No.5, pp.633-649. 29. Goh, M. (1994), “EOQ models with general demand and holding cost functions”, European Journal of Operational Research, Vol.73, Iss.1, pp.50-54. 30. Goyal, S. K. (1987), “Economic ordering policy for deteriorating items over an infinite time horizon”, European Journal of the Operational Research, Vol.28, Iss.3, pp.298-301. 31. Goyal, S. K. (1988), “A heuristic for replenishment of trended inventories considering shortages”, Journal of the Operational Research Society, Vol.39, No.6, pp.885-887. 32. Goyal, S. K., D. Morin and F. Nebebe (1992), “The finite horizon trended inventory replenishment problem with shortages”, Journal of the Operational Research Society, Vol.43, No.12, pp.1173-1178. 33. Goswami, A. and K. S. Chaudhuri (1991a), “EOQ model for an inventory with a linear trend in demand and finite rate of replenishment considering shortages”, International Journal of Systems Science, No.22, pp.181-187. 34. Goswami, A. and K. S. Chaudhuri (1991b), “An EOQ model for deteriorating items with shortages and a linear trend in demand,” Journal of the Operational Research Society, Vol. 42, No.12, pp.1105-1110. 35. Hariga, M. (1994), “The inventory lot-sizeing problem with continuous time-varying demand and shortages”, Journal of the Operational Research Society, Vol. 45, No.7, pp.1105-1110. 36. Hariga, M. and A. Al-Alyan (1997), “A lot sizing heuristic for deteriorating items with shortages in growing and declining markets”, Computers Operation Research, Vol.24, N0.11, pp.1075-1083. 37. Hariga, M. A. and L. Benkherouf (1994), “Optimal and heuristic inventory replenishment models for deteriorating items with exponential time-varying demand”, European Journal of the Operational Research, Vol.79, No.1, pp.123-137. 38. Hariga, M. (1995), “An EOQ model for deteriorating items with shortages and time-varying demand”, Journal of the Operational Research Society, Vol.46, No.3, pp.398-404. 39. Hariga, M. (1996), “Optimal EOQ models for deteriorating items with time-varying demand”, Journal of the Operational Research Society, Vol.47, No.10, pp.1228-1246. 40. Heng, K. J., J. Labban and R. J. Linn (1991), “An order-level lot-size inventory model for deteriorating items in a declining market”, Computer Industrial Engineering, Vol.20, Iss.2, pp.187-197. 41. Hollier, R. H. and K. L. Mak (1983), “Inventory replenishment policies for deteriorating items in a declining market’, International Journal of Production Research, Vol. 21, No.6, pp.813-826. 42. J.Douglas, F. and B. Ricard (1998), Numerical Methods, second edition, Pacific Grove, USA, Brooks/Cole Publishing Company. 43. Jamal, A. M. M., B. R. Sarker and S. Sarker (1997), “An Ordering Policy for Deteriorating Items with Allowable Shortage and Permissible Delay in Payment”, Journal of the Operational Research Society 1997, Vol. 48, No.8, 826-833. 44. Jalan, A. K., R. R. Giri and K. S. Chaudhuri (1996), “EOQ model for items with Weibull distribution deterioration, shortages and trended demand”, International Journal of Systems Science, Vol.27, No.8, pp.851-855. 45. Kim, D. H. (1995), “A heuristic for replenishment of deterorating items with a linear trend in demand”, International Journal of Production Economics, Vol.39, No.3, pp.265-270. 46. Lin, C., B. Tan and W. C. Lee (1999), “An EOQ model for deteriorating items with time-varying demand and shortages”, International Journal of Systems Sciences, Vol.31, No.3, pp.391-400. 47. Lin, C., B. Tan and W. C. Lee (2000), “An EOQ model for weibull deteriorating items with decreasing demand, shortage and partial backordered”, working paper. 48. Mak, K. L. (1982), “A production lot size inventory model for deteriorating items”, Computer Industrial Engineering, Vol.6, No.2, pp.309-317. 49. Mitra, A., J. F. Cox and R. R. Jesse (1984), “A note on determining order quantities with a linear trend in demand”, Journal of the Operational Research Society, Vol.35, No.2, pp.141-144. 50. Murdeshwar, T. M. (1988), “Inventory replenishment policy for linearly increasing demand considering shortages-an optimal solution” Journal of the Operational Research Society, Vol.39, No.7, pp687-692. 51. Nahmias, S. (1982), “Perishable inventory theory: a review”, Operations Research, Vol.30, No.4, pp.680-708. 52. Ousteryoung, J. S., D. E. McCarty and W. J. Reinhart (1986), “Use of EOQ model for inventory analysis”Production Inventory Management, Vol.27, No.3, pp.39-46. 53. Pal, S., A. Goswami and K. S. Chaudhuri (1993), “A deterministic inventory model for deteriorating items with stock-dependent demand rate”, International Journal of Production Economics, Vol.32, No.3, pp291-299. 54. Philip, G. C. (1974), “A generalized EOQ model for items with Weibull distribution deterioration”, AIIE Transactions, Vol.5, No.4, pp.159-162. 55. Prasad, S. (1994), “Classification of inventory models and systems”, International Journal of Production Economics, Vol. 34, No.2, pp.209-222. 56. Raafat, F. (1991), “Survey of literature on continuously deteriorating inventory model”, Journal of the Operational Research Society, Vol.42, No.1, pp.27-37. 57. Raafat, F., P. M. Wolfe and H. K. Eldin (1991), “An inventory model for deteriorating items”, Computer Industrial Engineering, Vol.20, Iss.1, pp.89-94. 58. Ritchie, E. (1984), “The EOQ for linear increasing demand: a simple optimal solution”, Journal of the Operational Research Society, Vol.35, No.10, pp.949-952. 59. Sachan, R. S. (1984), “On (T, Si) policy inventory model for deteriorating items with time proportional demand”, Journal of the Operational Research Society, Vol.35, No.11, pp.1013-1119. 60. Shah, Y. K. (1976), “An order-level lot-size inventory model for deterioration items”, AIIE Transactions, Vol.9, No.1, pp.108-112. 61. Silver, E. A. and H. C. Meal (1969), “A simple modification of the EOQ for the case of a varying demand rate”, Production Inventory Management, Vol.10, No.4, pp.52-65. 62. Silver, E. A. and H. C. Meal (1973), “A heuristic for selecting lot size quantities for the case of a deterministic time varying demand rate and discrete opportunities for replenishment”, Production Inventory Management, Vol. 14, No.1, pp.64-74. 63. Silver, E. A. (1979), “A simple inventory decision rule for a linear trend in demand”, Journal of the Operational Research Society, Vol.30, No.1, pp.71-75. 64. Silver, E. A. (1981), “Operations research in inventory management: a review and critique”, Operations Research, Vol.29, No.4, pp.628-645. 65. Tadikamalla, P. R. (1978), “An EOQ inventory model for items with Gamma distributed deterioration,” AIIE Transactions, Vol. 10, No.1, pp.100-103. 66. Teng, J. T. (1994), “A note on inventory for replenishment policy for increasing demand, “Journal of the Operational Research Society, Vol.45, No.11, pp.1335-1337. 67. Wagner, H. M. and T. N. Whitin (1958), “Dynamic version of the economic lot size model”, Management Science, Vol.5, No.1, pp89-96. 68. Webster’s Encyclopedic Unabridged Dictionary of the English Language (1989), New York, New York, Portland House. 69. Wee, H. M. (1995), “A deterministic lot-size inventory model for deteriorating items with shortages and a declining market”, Computers and Operations Research, Vol. 22, No.3, pp.345-356. 70. Wu, J.W., C. Lin, B. Tan and W. C. Lee (1998), “An EOQ inventory model with time varying demand and weibull deterioration with shortage”, International Journal of Systems Science, Vol.31, No.3, pp.391-400.
|