|
[1]Ishii, M., Thermo-Fluid Dynamic of Two-Phase Flow, Eyrolles, Paris, 1975. [2]Berenson, P. J., “Film-boiling heat transfer from a horizontal surface”, ASME Journal of Heat Transfer, 83, pp. 351-358, 1961. [3]Bromley, L. A., “Heat transfer in stable film boiling”, Chemical engineering Progress, 46 , pp. 221-227, 1950. [4]Klimenko, V. V., “Film-boiling on a horizontal plate–new correlation”, International Journal of Heat and Mass Transfer, 24, pp. 69-79, 1981. [5]Welch, S. W. J., “Local simulation of two-phase flows including interface tracking with mass transfer”, Journal of Computational Physics, 121, pp. 142-154, 1995. [6]Son, G. and Dhir, V. K., “Numerical simulation of saturated film boiling on a horizontal surface”, ASME Journal of Heat Transfer, 119, pp. 525-533, 1997. [7]Juric, D. and Tryggvason, G., “Computations of boiling flows”, International Journal of Multiphase Flow, 24, pp. 387-410, 1998. [8]Son, G. and Dhir, V. K., “Numerical simulation of film boiling near critical pressures with a level set method”, ASME Journal of Heat Transfer, 120, pp. 183-192, 1998. [9]Welch, S. W. J. and Wilson, J., “A volume of fluid based method for fluid flows with phase change”, Journal of Computational Physics, 160, pp. 662-682, 2000. [10]Ramaswamy, B. and Kawahara, M., “Lagrangian finite element analysis applied to viscous free surface fluid flow”, International Journal for Numerical Methods in Fluids, 7, pp. 953-984, 1987. [11]Fukai, J., Zhao, Z., Poulikakos, D., Megaridis, C. M. and Miyatake, O., “Modeling of the deformation of a liquid droplet impinging upon a flat surface”, Physics of Fluids A: Fluid Dynamics, 5, pp. 2588-2599, 1993. [12]Muzaferija, S. and Peric, M., “Computation of free-surface flows using the finite-volume method and moving grids”, Numerical Heat Transfer Part B: Fundamental, 32, pp. 369-384, 1997. [13]Unverdi, S. O. and Tryggvason, G., “A front-tracking method for viscous, incompressible, multi-fluid flows”, Journal of Computational Physics, 100, pp. 25-37, 1992. [14]Tryggvasson, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. and Jan, Y.-J., “A front-tracking method for the computations of multiphase flow”, Journal of Computational Physics, 169, pp. 708–759, 2001. [15]Osher, S. and Sethian, J. A., “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations”, Journal of Computational Physics, 79, pp. 12–49, 1988. [16]Sussman, M., Smereka, P. and Osher, S., “A level set approach for computing solutions to incompressible two-phase flow”, Journal of Computational Physics, 114, pp. 146-159, 1994. [17]Sussman, M., Fatami, E., Smereka, P. and Osher, S., “An improved level set method for incompressible two-phase flows”, Computers and Fluids, 27, pp. 663-680, 1998. [18]Sussman, M. and E., Fatami, “An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow”, SIAM Journal on Scientific Computing, 20, pp. 1165-1191, 1999. [19]Harlow, F. H. and Welch, J. E., “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface”, The Physics of Fluids, 8, pp. 2182-2189, 1965. [20]Monaghan, J. J., “Simulating free surface flows with SPH”, Journal of Computational Physics, 110, pp. 399-406, 1994. [21]Koshizuka, S., Nobe, A. and Oka, Y., “Numerical analysis of breaking waves using the moving particle semi-implicit method”, International Journal for Numerical Methods in Fluids, 26, pp. 751-769, 1998. [22]Hirt, C. W. and Nichols, H. D., “Volume of fluid (VOF) method for the dynamics of free boundaries”, Journal of Computational Physics, 39, pp. 201-225, 1981. [23]Rudman, M., “Volume-tracking methods for interfacial flow calculations”, International Journal for Numerical Methods in Fluids, 24, pp. 671-691, 1997. [24]Rudman, M., “A volume-tracking method for incompressible multifluid flows with large density variations”, International Journal for Numerical Methods in Fluids, 28, pp. 357-378, 1998. [25]Zalesak, S. T., “Fully multidimensional flux-corrected transport algorithms for fluids”, Journal of Computational Physics, 31, pp. 335-262, 1979. [26]Ubbink, O. and Issa, R. I., “A method for capturing sharp fluid interfaces on arbitrary meshes”, Journal of Computational Physics, 153, pp. 26-50, 1999. [27]Muzaferija, S., Peric, M., Sames, P. and Schellin, T., “A two-fluid Navier-Stokes solver to simulate water entry”, Proceeding of Twenty- Second Symposium On Naval Hydrodynamics, pp. 638-649, Washington, DC, 1998. [28]Darwish, M. and Moukalled, F., “Convective schemes for capturing interfaces of free-surface flows on unstructured grids”, Numerical Heat Transfer Part B: Fundamental, 49, pp. 19-42, 2006. [29]Gaskell, P. H. and Lau, A. K. C., “Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm”, International Journal for Numerical Methods in Fluids, 8, pp. 617-641, 1988. [30]Noh, W. F. and Woodward, P., “SLIC (simple line interface calculation)”, Lecture Notes in Physics, 59, pp. 330-340, 1976. [31]Youngs, D. L., “Time-dependent multi-material flow with large fluid distortion”, in K.W. Morton and M.J. Baines (Eds.), Numerical Methods for Fluid Dynamics, pp. 273–285, Academic, New York, 1982. [32]Rider, W. J. and Kothe, D. B., “Reconstructing volume tracking”, Journal of Computational Physics, 141, pp. 112-152, 1998. [33]Pilliod Jr., J. E. and Puckett, E. G., “Second-order accurate volume-of-fluid algorithms for tracking material interfaces”, Journal of Computational Physics, 199, pp. 465-502, 2004. [34]Ashgriz, N. and Poo, J. Y., “FLAIR: flux line-segment model for advection and interface reconstruction”, Journal of Computational Physics, 93, pp. 449-468, 1991. [35]Tavakoli, R., Babaei, R., Varahram, N. and Davami, P., “Numerical simulation of liquid/gas phase flow during mold filling”, Computer Methods in Applied Mechanics and Engineering, 196, pp. 697-713, 2006. [36]Mosso, S. J., Swartz, B. K., Kothe, D. B. and Clancy, S. P., “Recent enhancement of volume tracking algorithm for irregular grids”, Los Alamos National Lab. Rept. LA-CP-96-227, Los Alamos, New Mexico, 1996. [37]Shahbazi, K., Paraschivoiu, M. and Mostaghimi, J., “Second order accurate volume tracking based on remapping for triangular meshes”, Journal of Computational Physics, 188, pp. 100-122, 2003. [38]Ashgriz, N., Barbat, T. and Wang, G., “A computational Lagrangian- Eulerian advection remap for free surface flows”, International Journal for Numerical Methods in Fluids, 44, pp. 1-32, 2004. [39]Sussman, M. and Puckett, E. G., “A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows”, Journal of Computational Physics, 162, pp. 301-337, 2000. [40]Son, G. and Hur, N., “A coupled level set and volume-of-fluid method for the buoyancy-driven motion of fluid particles”, Numerical Heat Transfer Part B: Fundamentals, 42, pp. 523-542, 2002. [41]van der Pijl, S. P., Segal, A., Vuik, C. and Wesseling, P., “A mass-conserving level-set method for modelling of multi-phase flows”, International Journal for Numerical Methods in Fluids, 47, pp. 339-361, 2005. [42]Yang, X., James, A. J., Lowengrub, J., Zheng, X. and Cristini, V., “An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids”, Journal of Computational Physics, 217, pp. 364-394, 2006. [43]Sun, D. L. and Tao, W. Q., “A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows”, International Journal of Heat and Mass Transfer, 53, pp. 645-655, 2010. [44]Shin, S. and Juric, D., “Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity”, Journal of Computational Physics, 180, pp. 427-470, 2002. [45]Esmaeeli, A. and Tryggvason, G., “Computations of film boiling. part I: numerical method”, International Journal of Heat and Mass Transfer, 47, pp. 5451-5461, 2004. [46]Esmaeeli, A. and Tryggvason, G., “Computations of film boiling. part II: multi-mode film boiling”, International Journal of Heat and Mass Transfer, 47, pp. 5463-5476, 2004. [47]Esmaeeli, A. and Tryggvason, G., “A front tracking method for computations of boiling in complex geometries”, International Journal of Multiphase Flow, 30, pp. 1037- 1050, 2004. [48]Son, G., “A numerical method for bubble motion with phase change”, Numerical Heat Transfer Part B: Fundamentals, 39, pp. 509-523, 2001. [49]Fedkiw, R. P., Aslam, T., Merriman, B. and Osher S., “A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)”, Journal of Computational Physics, 152, pp. 457-492, 1999. [50]Kang, M., Fedkiw, R. P. and Liu, X.-D., “A boundary condition capturing method for multiphase incompressible flow”, Journal of Scientific Computing, 15, pp. 323-360, 2000. [51]Tanguy, S., Menard, T. and Berlemont, A., “A level set method for vaporizing two-phase flows”, Journal of Computational Physics, 221, pp. 837-853, 2007. [52]Gibou, F., Chen, L., Nguyen, D. and Banerjee, S., “A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change”, Journal of Computational Physics, 222, pp. 536-555, 2007. [53]Maurya, R. S., Diwakar, S. V., Sundararajan, T. and Das, S. K., “Numerical investigation of evaporation in the developing region of laminar falling film flow under constant wall heat flux conditions”, Numerical Heat Transfer Part A: Applications, 58, pp. 41-64, 2010. [54]Son G. and Dhir, V. K., “A level set method for analysis of film boiling on an immersed solid surface”, Numerical Heat Transfer Part B: Fundamentals, 52, pp. 153-177, 2007. [55]Son, G. and Dhir, V. K., “Three-dimensional simulation of saturated film boiling on a horizontal cylinder”, International Journal of Heat and Mass Transfer, 51, pp. 1156-1167, 2008. [56]Welch, S. W. J. and Rachidi, T., “Numerical computation of film boiling including conjugate heat transfer”, Numerical Heat Transfer Part B: Fundamentals, 42, pp. 35-53, 2002. [57]Agarwal, D.K., Welch, S. W. J., Biswas, G. and Durst, F., “Planar simulation of bubble growth in film boiling in near-critical water using a variant of the VOF method”, ASME Journal of heat transfer, 126, pp. 329-338, 2004. [58]Guo, D. Z., Sun, D. L., Li, Z. Y. and Tao, W. Q., “Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the VOSET method”, Numerical Heat Transfer Part A: Applications, 59, pp. 857-881, 2011. [59]Tsui, Y.-Y., Lin, S.-W., Cheng, T.-T. and Wu, T.-C., “Flux-blending schemes for interface capture in two-fluid flows”, International Journal of Heat and Mass Transfer, 52, pp. 5547-5556, 2009. [60]Tsui, Y.-Y. and Lin, S.-W., “A VOF based conservative interpolation scheme for interface tracking (CISIT) of two-fluid flows”, Numerical Heat Transfer Part B: Fundamentals, 63, pp. 263-283, 2013. [61]Brackbill, J. U., Kothe, D. B. and Zemach, C., “A continuum method for modeling surface tension”, Journal of Computational Physics, 100, pp. 335-354, 1992. [62]Tsui, Y.-Y. and Wu, T.-C., “A pressure-based unstructured-grid algorithm using high-resolution schemes for all-speed flows”, Numerical Heat Transfer Part B: Fundamental, 53, pp. 75-96, 2008. [63]Tsui, Y.-Y. and Wu, T.-C., “Use of characteristic-based flux limiters in a pressure-based unstructured-grid algorithm incorporating high-resolution schemes”, Numerical Heat Transfer Part B: Fundamental, 55, pp. 14-34, 2009 [64]Harten, A. “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 49, pp. 357-393, 1983. [65]Sweby, P. K., “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM Journal on Numerical Analysis, 21, pp. 995-1011, 1984. [66]Leonard, B. P., “The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection”, Computer Methods in Applied Mechanics and Engineering, 88, pp. 17-74, 1991. [67]Leonard, B. P., “Simple high-accuracy resolution program for convective modeling of discontinuities”, International Journal for Numerical Methods in Fluids, 8, pp. 1291-1318, 1988 [68]Leonard, B. P., “Bounded higher-order upwind multi-dimensional finite- volume convection-diffusion algorithm”, in: W. J. Minkowycz, Editor, Advances in Numerical Heat Transfer, Taylor and Francis, 1997. [69]Yeh, J.-T., “Simulation and industrial application of inkjet”, 7th National Computational Fluid Dynamics Conference, Kenting, Taiwan, 2000. [70]Yeh, J.-T., “A VOF-FEM and coupled inkjet simulation”, Proc. of ASME Fluids Engineering Division Summer Meeting, pp. 1-5, New Orleans, USA, 2001. [71]Peskin, C. S., “Numerical analysis of blood flow in the heart”, Journal of Computational Physics, 25, pp. 220-252, 1977. [72]Issa, R. I., “Solution of the implicitly discretised fluid flow equations by operator-splitting”, Journal of Computational Physics, 62, pp. 40-65, 1986. [73]Martin, J. C. and Moyce, W. J., “An experimental study of the collapse of liquid columns on a rigid horizontal plane”, Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical, 244 pp. 312-324, 1952. [74]Koshizuka, S., Tamako, H. and Oka, Y., “A particle method for incompressible viscous flow with fluid fragmentation”, Computational Fluid Dynamics Journal, 4, pp. 29-46, 1995. [75]Ubbink, O., “Numerical prediction of two fluid systems with sharp interfaces”, University of London, PhD thesis, 1997. [76]Stoker, J. J., Water wave, John Wiley &; Sons, New York, 1958. [77]Grace, J. R., “Shape and velocities of bubbles rising in infinite liquids", Transactions of the Institution of Chemical Engineers, 51, pp. 118-120, 1973. [78]Reimann, M. and Grigull, U., “Warmeubergang bei freier konvektion und flimsieden im kritischen gebiet von wasser und kohlendioxid”, Warmeund Stof-fubertragung, 8, pp. 229-239, 1975. [79]Tomar, G., Biswas, G., Sharma, A. and Agrawal, A., “Numerical simulation of bubble growth in film boiling using a coupled level-set and volume-of-fluid method”, Physics of Fluids, 14, pp. 112103, 2005 [80]Son, G., “A level set method for incompressible two-fluid flows with immersed solid boundaries”, Numerical Heat Transfer Part B: Fundamental, 47, pp. 473-489, 2005. [81]Hosler, R. E. and Westwater, J. W., “Film boiling on a horizontal plate”, ARS Journal, 32, pp. 553–558, 1962. [82]Yiantsios, S. G. and Higgins, B. G., “Rayleigh-Taylor instability in this viscous films”, Physics of Fluids A: Fluid Dynamics, 1, pp. 1484-1501, 1989. [83]Bhaga, D. and Weber, M.E., “Bubbles in viscous liquids: shapes, wakes and velocities”, Journal of Fluid Mechanics, 105, pp. 61–85, 1981. [84]Hua, J. and Lou, J., “Numerical simulation of bubble rising in viscous liquid”, Journal of Computational Physics, 222, pp. 769-795, 2007. [85]Amaya-Bower, L. and Lee, T., “Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method”, Computers &; Fluids, 39, pp. 1191-1207, 2010. [86]Szewc, K., Pozorski, J. and Minier, J.-P., “Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics”, International Journal of Multiphase Flow, 50, pp. 98-105, 2012. [87]Bonometti, T. and Magnaudet, J., “Transition from spherical cap to toroidal bubbles”, Physics of Fluids, 18, pp. 052102, 2006. [88]Brereton G. and Korotney, D., “Coaxial and oblique coalescence of two rising bubbles”, in: I. Sahin and G. Tryggvason (Eds.), Dynamics of Bubbles and Vortices near a Free Surface, ASME, New York, 1991. [89]Rieber, M. and Frohn, A., “A numerical study on the mechanism of splashing”, International Journal of Heat and Fluid Flow, 20, pp. 455-461, 1999. [90]Yarin, A. L., and Weiss, D. A., “Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity”, Journal of Fluid Mechanics, 283, pp. 141-173, 1995.
|