跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/08 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳永麒
研究生(外文):Yung-Chi Chen
論文名稱:有限元素分析於心導管氣球及氣囊之應用
論文名稱(外文):Applications of Finite Element Analysis: Computational Studies of Angioplasty Balloon and Sac
指導教授:蕭浩明
口試委員:廖洺漢蘇培珍
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:62
中文關鍵詞:心血管疾病經皮冠狀動脈介入治療分叉病變氣球擴張式血管支架心室輔助器有限元素分析
外文關鍵詞:Cardiovascular diseasesPercutaneous transluminal coronary angioplastyBifurcation lesionsBalloon-expandable stentVentricular assist devicesFinite element analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今心血管疾病在開發國家中已成為主要的死亡因素,國人十大死因報告中心臟疾病也高居第二位,是現代人不容忽視的疾病之一。本研究利用ABAQUS建立數個心血管疾病相關的有限元素模型,共分為三個部分:第一部分發展一理想冠狀動脈部署模型,並與先前的研究比較有無氣球在部署模型結果的差異,由結果可看出本研究所建立的冠狀動脈部署模型中,氣球會先將血管支架撐成一類似狗骨頭的形狀,再提供足夠的徑向力撐開血管,與臨床上所得的結果較接近;第二部分為一新型左心室輔助器的分析,模擬心室輔助器中的氣囊置於人體中承受週期性負載的情形,並探討氣囊不同的幾何設計參數的影響。模擬結果顯示,氣囊的厚度為影響安全係數及可承受的壓力差最主要的因素,然而考量其需置於人體內承受反覆的收縮及舒張負載,厚度0.275mm為一較佳的選擇。在葉片幾何設計的部分,本研究比較了不同厚度與長度設計參數的葉片之分析結果,葉片的長度變化會影響氣球與葉片交界處之應力、應變集中現象,相較之下,葉片的厚度漸縮變化所造成的影響則幾乎可忽略;第三部分則是一以Simultaneous Kissing Stenting(SKS)治療策略為例的分叉病變分析模型,利用VDISP子程序大幅降低兩血管支架推送至病變處所需的分析時間,並以準靜態分析模擬兩血管支架於與氣球、分叉病變間複雜的交互作問題。
有別於一般實驗以及臨床情況容易受到外界環境因素干擾而影響實驗結果,有限元素分析可確保獨立單一變數來進行實驗分析,並針對該變數所造成的臨床影響進行研究並加以改善。本研究所建立的有限元素分析模型提供了在工程角度上及臨床上的評估,其結果可作為未來醫療器材設計的考量,亦可用於術前分析,提供醫師與相關醫療人員更完整的資訊及手術風險評估,提升整體的醫療成效。

Cardiovascular disease is now the leading cause of death worldwide. To investigate cardiovascular-related diseases, finite element models were developed in this study. The study is organized as follows: In the first part, a finite element model is established to investigate stent-artery interaction with absence of a realistic balloon. A comparison of previous study is shown that the balloon and the stent expand in a non-uniform end-first manner (the dogbonning effect), and then apply radial force to enlarge the arterial wall. A numerical analysis of novel left ventricular assist device is developed to evaluate the mechanical integrity and pulsatile fatigue resistance of the blood sac in the second part. The results show that the sac thickness is the key factor for safety factor and 0.275 mm is a better choice for resistance of periodic physiologic loading. The length and thickness of lobes are also investigated whether it reduce the stress/strain concentration near the connection region of lobes and sac. The results show that lobe length may affect the stress/strain concentration while tapered lobe thickness causes almost negligible results. In the last part, a bifurcation intervention strategy model of simultaneous kissing stenting technique (SKS) is developed while VDISP user subroutine is used to simulate the interaction behavior between two balloon-expandable stents, balloon and bifurcation lesions.
Computational modeling has become a prevalent tool due to its ability to investigate the influence of individual parameters and improve the temporal efficiency of new product development. Finite element models developed in this study could give insights into various aspects of future design optimization for new biomaterials or biomedical devices. It is also feasible to provide a guideline for physicians and medical personnels to achieve the best clinical outcome.

口試委員審定書 .............................................................................................................. ii
致謝 ................................................................................................................................. iii
摘要 ................................................................................................................................. iv
Abstract ........................................................................................................................... v
目錄 ................................................................................................................................ vii
圖目錄 ............................................................................................................................. ix
表目錄 ............................................................................................................................ xii
第一章 緒論 ................................................................................................................ 1
1.1. 心血管疾病 .................................................................................................... 1
1.1.1. 心臟衰竭(Heart Failure, HF) ......................................................... 1
1.1.2. 機械輔助循環裝置 ............................................................................. 2
1.1.3. 動脈粥狀硬化(Atherosclerosis) .................................................... 3
1.1.4. 分叉病變(Bifurcation Lesions)...................................................... 5
1.1.5. 分叉病變介入治療(Bifurcation Intervention) .............................. 6
1.2. 研究目的與研究內容 .................................................................................. 10
第二章 理想冠狀動脈部署模型 ............................................................................... 11
2.1. 簡介 ............................................................................................................... 11
2.2. 有限元素模型 .............................................................................................. 12
2.2.1. 氣球擴張式血管支架 ....................................................................... 12
2.2.2. 輸送系統 ........................................................................................... 16
2.2.3. 氣球模型 ........................................................................................... 17
2.2.4. 理想冠狀動脈模型 ........................................................................... 21
2.2.5. 模擬步驟設定 ................................................................................... 25
2.3. 有限元素模擬結果與討論 .......................................................................... 29
viii
第三章 新型左心室輔助器分析模型 ...................................................................... 35
3.1. 簡介 .............................................................................................................. 35
3.2. 有限元素模型 .............................................................................................. 36
3.2.1. 模型幾何及對稱分析 ....................................................................... 36
3.2.2. 網格劃分 ........................................................................................... 36
3.2.3. 材料性質設定 ................................................................................... 38
3.2.4. 模擬步驟設定 ................................................................................... 39
3.2.5. 安全係數分析 ................................................................................... 40
3.3. 模擬分析結果與討論 .................................................................................. 41
3.3.1. 氣囊厚度之分析 ............................................................................... 41
3.3.2. 葉片幾何設計之分析 ....................................................................... 44
3.3.3. 結果與討論 ....................................................................................... 46
第四章 動脈分叉病變治療策略模型 ...................................................................... 48
4.1. 簡介 .............................................................................................................. 48
4.2. 有限元素模型 .............................................................................................. 48
4.2.1. 血管支架及運輸系統模型 ............................................................... 48
4.2.2. 理想分叉血管模型 ........................................................................... 49
4.2.3. 血管支架之推送 ............................................................................... 50
4.2.4. 模擬步驟設定 ................................................................................... 52
4.3. 有限元素模擬結果與討論 .......................................................................... 54
第五章 結論與未來展望 .......................................................................................... 58
Reference ..................................................................................................................... 60

[1] C. f. D. C. a. Prevention. Leading Causes of Death. Available: http://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
[2] 衛生福利部. 103年國人死因統計結果. Available: http://www.mohw.gov.tw/news/531349778
[3] T. G. Ganiats, D. K. Browner, and H. C. Dittrich, "Comparison of quality of well-being scale and NYHA functional status classification in patients with atrial fibrillation," American heart journal, vol. 135, pp. 819-824, 1998.
[4] L. National Heart, and Blood Institute. What Is Atherosclerosis? Available: http://www.nhlbi.nih.gov/health/health-topics/topics/atherosclerosis
[5] Boston-Scientific. Angioplasty and Stent Implantation. Available: http://www.bostonscientific.com/lifebeat-online/cardiac-procedures/angioplasty-and-stents.html
[6] J. E. Sousa, P. W. Serruys, and M. A. Costa, "New frontiers in cardiology drug-eluting stents: part I," Circulation, vol. 107, pp. 2274-2279, 2003.
[7] J. B. Hermiller, A. Raizner, L. Cannon, P. A. Gurbel, M. A. Kutcher, S. C. Wong, et al., "Outcomes with the polymer-based paclitaxel-eluting TAXUS stent in patients with diabetes mellitus: the TAXUS-IV trial," Journal of the American College of Cardiology, vol. 45, pp. 1172-1179, 2005.
[8] P. W. Serruys, J. A. Ormiston, Y. Onuma, E. Regar, N. Gonzalo, H. M. Garcia-Garcia, et al., "A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods," The Lancet, vol. 373, pp. 897-910, 2009.
[9] R. Waksman and R. Pakala, "Biodegradable and bioabsorbable stents," Current pharmaceutical design, vol. 16, pp. 4041-4051, 2010.
[10] A. Medina, J. S. de Lezo, and M. Pan, "A new classification of coronary bifurcation lesions," Revista espanola de cardiologia, vol. 59, pp. 183-183, 2006.
[11] P. Mortier, "Computer modelling of coronary bifurcation stenting," Ghent University, 2010.
[12] V. Legrand, M. Thomas, M. Zelisko, B. De Bruyne, N. Reifart, T. Steigen, et al., "Percutaneous coronary intervention of bifurcation lesions: state-of-the-art. Insights from the second meeting of the European Bifurcation Club," EuroIntervention, vol. 3, pp. 44-49, 2007.
[13] I. Iakovou and A. Colombo, "Two-stent techniques for the treatment of coronary bifurcations with drug-eluting stents," Hellenic J Cardiol, vol. 46, pp. 188-98, 2005.
[14] A. Colombo, G. Stankovic, D. Orlic, N. Corvaja, F. Liistro, F. Airoldi, et al., 61 "Modified T‐stenting technique with crushing for bifurcation lesions: immediate results and 30‐day outcome," Catheterization and cardiovascular interventions, vol. 60, pp. 145-151, 2003.
[15] B. Chevalier, B. Glatt, T. Royer, and P. Guyon, "Placement of coronary stents in bifurcation lesions by the “culotte” technique," The American journal of cardiology, vol. 82, pp. 943-949, 1998.
[16] F. Fogarotto, "Finite Element Analysis of Coronary Artery Stenting," 2010.
[17] M. De Beule, "Finite element stent design," Ghent University, 2008.
[18] G. Mouktadiri and B. Bou-Sa, "Aortic endovascular repair modeling using the finite element method," Journal of Biomedical Science and Engineering, vol. 2013, 2013.
[19] Medtronic. SPRINTER LEGEND RX SEMICOMPLIANT BALLOON DILATATION CATHETER. Available: http://www.medtronic.com/us-en/healthcare-professionals/products/cardiovascular/catheters/balloon-catheters/sprinter-legend-rx-semicompliant-balloon-dilatation-catheter.html#tab2
[20] S. Timoshenko, Strength of materials: New York, 1930.
[21] The Structure of an Arterial Wall. Available: en.wikipedia.org/wiki/File:Blausen_0055_ArteryWallStructure.png
[22] C. J. van Andel, P. V. Pistecky, and C. Borst, "Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors," The Annals of thoracic surgery, vol. 76, pp. 58-64, 2003.
[23] J. Xu, J. Yang, N. Huang, C. Uhl, Y. Zhou, and Y. Liu, "Mechanical response of cardiovascular stents under vascular dynamic bending," Biomedical engineering online, vol. 15, p. 1, 2016.
[24] G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, "Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling," American Journal of Physiology-Heart and Circulatory Physiology, vol. 289, pp. H2048-H2058, 2005.
[25] H. Zahedmanesh and C. Lally, "Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis," Medical & biological engineering & computing, vol. 47, pp. 385-393, 2009.
[26] R. Ogden, "Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1972, pp. 565-584.
[27] H. M. Loree, A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee, "Static circumferential tangential modulus of human atherosclerotic tissue," Journal of 62 biomechanics, vol. 27, pp. 195-204, 1994.
[28] D. M. Ebenstein, D. Coughlin, J. Chapman, C. Li, and L. A. Pruitt, "Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques," Journal of Biomedical Materials Research Part A, vol. 91, pp. 1028-1037, 2009.
[29] C. Lally, F. Dolan, and P. Prendergast, "Cardiovascular stent design and vessel stresses: a finite element analysis," Journal of biomechanics, vol. 38, pp. 1574-1581, 2005.
[30] I. Pericevic, C. Lally, D. Toner, and D. J. Kelly, "The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents," Medical engineering & physics, vol. 31, pp. 428-433, 2009.
[31] 趙令翔, "冠狀動脈疾病之血管與支架交互作用模型," 2014.
[32] J. Cutnell and K. Johnson, "Physics. Vol 1," ed: New York, NY: John Wiley & Sons Inc, 1998.
[33] P. Mortier, Y. Hikichi, N. Foin, G. De Santis, P. Segers, B. Verhegghe, et al., "Provisional stenting of coronary bifurcations: insights into final kissing balloon post-dilation and stent design by computational modeling," JACC: Cardiovascular Interventions, vol. 7, pp. 325-333, 2014.
[34] A. M. Malek, S. L. Alper, and S. Izumo, "Hemodynamic shear stress and its role in atherosclerosis," Jama, vol. 282, pp. 2035-2042, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top