跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/10/31 22:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉勤政
研究生(外文):Chin-Cheng Liu
論文名稱:阿拉伯芥熱休克因子結合蛋白之交互作用體研究
論文名稱(外文):Interactomic Profile of MicroProtein-like Heat Shock Factor Binding Protein, a Negative Regulator of Heat Shock Response, Under Heat Stress and Recovery Stages
指導教授:靳宗洛靳宗洛引用關係
指導教授(外文):Tsung-Luo Jinn
口試委員:林秋榮林讚標葉開溫張英峯
口試委員(外文):Chu-Yung LinTsan-Piao LinKai-Wun YehIng-Feng Chang
口試日期:2014-06-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:56
中文關鍵詞:捲曲螺旋結構蛋白熱休克轉錄因子結合蛋白熱休克轉錄因子熱逆境訊息傳導熱逆境蛋白質交互作用體微蛋白
外文關鍵詞:coiled-coil proteinHSBPHSFheat shock signalingheat stressinteractomemicroProtein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
寡聚體型轉錄因子的活性,能夠被一類具單一功能區塊的小型蛋白質,藉由干擾
轉錄因子的聚合進行調控。熱休克轉錄因子結合蛋白(HSBP)是一種分子量約10
kDa的小分子蛋白質,其本身與其目標蛋白─熱休克轉錄因子(HSF)的寡聚合區域
皆具有捲曲螺旋結構區塊;二者藉由此區塊的交互作用,HSBP在熱休克反應過
程中扮演負向調控者的角色。阿拉伯芥的HSBP是一種細胞質蛋白,然而在熱逆
境過後出現在細胞核中並和HSF進行交互作用,終止HSF的功能。為了揭露阿
拉伯芥HSBP在細胞質中交互作用的夥伴、以及與HSF的家族成員間交互作用概
況,我們分別分析HSBP免疫共沉澱樣本的質譜,以及進行HSBP與HSF的雙分
子螢光互補試驗。免疫共沉澱之質譜分析結果,呈現14個受熱處理後會和HSBP
具明顯交互作用的細胞質蛋白質。這份清單包含了細胞質型HSP70和整個MAG2
蛋白質複合體的蛋白質單元,而CIP1和KAC1是本清單中具最強證據力所支持
的兩個候選蛋白質;上述蛋白質皆被預測帶有一個以上的捲曲螺旋結構區塊。此
外、我們觀察到HSBP可與16個HSF進行交互作用,其大多數位於細胞核中。
這些HSFs被報導參與在包含了熱逆境、氧化逆境、以及種子成熟期的生理反應
中。我們推測做為一個小型的調控蛋白質,HSBP可透過與不同HSF、及含有捲
曲螺旋結構區的細胞質蛋白質發生交互作用,以因應眾多的逆境和生長發育上的
需求。

Transcription factors could be regulated by small single-domain proteins that disturb the formation of active oligomers. Heat shock factor (HSF) binding protein (HSBP) is a 10-kDa protein with a coiled-coil motif that interacts with the oligomerization domain of HSFs and is a negative regulatorof the heat stress response (HSR). In Arabidopsis (Arabidopsis thaliana), HSBP is a cytoplasmic protein that translocates to the nucleus after HS for HSF interaction. To uncover the cytoplasmic interacting proteins of HSBP and characterize the interaction with HSF members, we used mass spectrometry after HSBP co-immunoprecipitation (co-IP) and HSBP–HSF bimolecular fluorescence complementation assays. Mass spectrometry after co-IP revealed 14 cytoplasmic HSBP-interacting candidates responding to HS in Arabidopsis seedlings. The candidates were cytosolic HSP70s and all components of the MAIGO 2 complex; the most robust candidates were COP1-interactive protein 1 and kinesin-like protein for actin-based chloroplast movement 1, predicted to contain at least one coiled-coil domain. As well, 16 HSFs interacted with HSBP, predominantly in the nucleus, and included factors reported to be involved in the HS signaling cascade, antioxidant mechanisms, and seed maturation. As a small regulatory protein, HSBP interacts with HSFs and cytoplasmic coiled-coil–containing partners in response to numerous stress and developmental conditions.

Table of Contents

摘要 I
Abstract II
Abbreviations III

Introduction 1
Heat stress and heat shock response 1
Arabidopsis heat shock factors 2
microProteins 3
Heat shock factor binding proteins 3

Materials and Methods 6
Plants materials and growth condition 6
RNA extraction and RT-PCR 6
Western blot and immunoprecipitation (IP) analysis 7
Protein identification and database search 7
Bimolecular fluorescence complementation (BiFC) assays 8
Primers and sequence data 9

Results 10
Preparation of HSBP-3xFLAG and -GFP expression plants 10
Identi&;#64257;cation of candidate HSBP-interacting proteins 10
Confirmation of HSBP-interacting proteins 13
Interaction of HSBP with HSFs 13

Discussion 15
The action of HSBP during heat shock response involves cytoskeleton-associating proteins and endomembrane-localized proteins 15
HSBP interacts with HSP70 and HSF in the distinct cellular compartments 17
HSBP may regulate HSF function in antioxidant mechanisms and seed maturation, in addition to heat shock response 17
HSBP would have additional functions in the cytoplasm 19

Tables 20
Figures 22
References 27
Supplementary Data 35
Appendix 55

Baniwal SK, Chan KY, Scharf KD, Nover L. 2007. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. Journal of Biological Chemistry 282, 3605-3613.

Bita CE, Gerats T. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4, 273.

Bjork JK, Sistonen L. 2010. Regulation of the members of the mammalian heat shock factor family. FEBS Journal 277, 4126-4139.

Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143, 251-262.

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743.

Czarnecka-Verner E, Pan S, Salem T, Gurley WB. 2004. Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Molecular Biology 56, 57-75.

Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139, 5-17.

Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268-281.

Folkers U, Kirik V, Schobinger U, Falk S, Krishnakumar S, Pollock MA, Oppenheimer DG, Day I, Reddy AR, Jurgens G, Hulskamp M. 2002. The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. EMBO Journal 21, 1280-1288.

Fortunati A, Piconese S, Tassone P, Ferrari S, Migliaccio F. 2008. A new mutant of Arabidopsis disturbed in its roots, right-handed slanting, and gravitropism defines a gene that encodes a heat-shock factor. Journal of Experimental Botany 59, 1363-1374.

Frey N, Klotz J, Nick P. 2010. A kinesin with calponin-homology domain is involved in premitotic nuclear migration. Journal of Experimental Botany 61, 3423-3437.

Fu S, Rogowsky P, Nover L, Scanlon MJ. 2006. The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors. Planta 224, 42-52.

Fu S, Scanlon MJ. 2004. Clonal mosaic analysis of EMPTY PERICARP2 reveals nonredundant functions of the duplicated HEAT SHOCK FACTOR BINDING PROTEINs during maize shoot development. Genetics 167, 1381-1394.

Fu SN, Meeley R, Scanlon MJ. 2002. empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis. Plant Cell 14, 3119-3132.

Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF. 2005. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proceedings of the National Academy of Sciences of the United States of America 102, 4908-4912.

Hong SY, Kim OK, Kim SG, Yang MS, Park CM. 2011. Nuclear import and DNA binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in Arabidopsis. Journal of Biological Chemistry 286, 1659-1668.

Hong SY, Seo PJ, Ryu JY, Cho SH, Woo JC, Park CM. 2013. A competitive peptide inhibitor KIDARI negatively regulates HFR1 by forming nonfunctional heterodimers in Arabidopsis photomorphogenesis. Molecules and Cells 35, 25-31.

Hsu SF, Jinn TL. 2010. AtHSBP functions in seed development and the motif is required for subcellular localization and interaction with AtHSFs. Plant Signaling and Behavior 5, 1-3.

Hsu SF, Lai HC, Jinn TL. 2010. Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiology 153, 773-784.

Hu W, Ma H. 2006. Characterization of a novel putative zinc finger gene MIF1: involvement in multiple hormonal regulation of Arabidopsis development. Plant Journal 45, 399-422.

Hwang SM, Kim DW, Woo MS, Jeong HS, Son YS, Akhter S, Choi GJ, Bahk JD. 2014. Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. Plant Cell and Environment 37, 1202-1222.

Ikeda M, Mitsuda N, Ohme-Takagi M. 2011. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiology 157, 1243-1254.

Jung HS, Crisp PA, Estavillo GM, Cole B, Hong F, Mockler TC, Pogson BJ, Chory J. 2013. Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proceedings of the National Academy of Sciences of the United States of America 110, 14474-14479.

Katschinski DM. 2004. On heat and cells and proteins. Physiology 19, 11-15.

Kim GT, Shoda K, Tsuge T, Cho KH, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H. 2002. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO Journal 21, 1267-1279.

Klotz J, Nick P. 2012. A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. New Phytologist 193, 576-589.

Kotak S, Vierling E, Baumlein H, von Koskull-Doring P. 2007. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19, 182-195.

Krepp J, Gelmedin V, Hawdon JM. 2011. Characterisation of hookworm heat shock factor binding protein (HSB-1) during heat shock and larval activation. International Journal for Parasitology 41, 533-543.

Lau OS, Deng XW. 2012. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends in Plant Science 17, 584-593.

Lee CF, Pu HY, Wang LC, Sayler RJ, Yeh CH, Wu SJ. 2006. Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta 224, 330-338.

Li L, Shimada T, Takahashi H, Koumoto Y, Shirakawa M, Takagi J, Zhao X, Tu B, Jin H, Shen Z, Han B, Jia M, Kondo M, Nishimura M, Hara-Nishimura I. 2013. MAG2 and three MAG2-INTERACTING PROTEINs form an ER-localized complex to facilitate storage protein transport in Arabidopsis thaliana. Plant Journal 76, 781-791.

Li L, Shimada T, Takahashi H, Ueda H, Fukao Y, Kondo M, Nishimura M, Hara-Nishimura I. 2006. MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell 18, 3535-3547.

Lindquist S. 1986. The heat-shock response. Annual Review of Biochemistry 55, 1151-1191.

Lindquist S, Craig EA. 1988. The heat-shock proteins. Annual Review of Genetics 22, 631-677.

Liu HC, Liao HT, Charng YY. 2011. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell and Environment 34, 738-751.

Liu X, Xu L, Liu Y, Tong X, Zhu G, Zhang XC, Li X, Rao Z. 2009. Crystal structure of the hexamer of human heat shock factor binding protein 1. Proteins 75, 1-11.

Lupas A, Van Dyke M, Stock J. 1991. Predicting coiled coils from protein sequences. Science 252, 1162-1164.

Magnani E, de Klein N, Nam HI, Kim JG, Pham K, Fiume E, Mudgett MB, Rhee SY. 2014. A comprehensive analysis of microProteins reveals their potentially widespread mechanism of transcriptional regulation. Plant Physiology 165, 149-159.

Matsui M, Stoop CD, von Arnim AG, Wei N, Deng XW. 1995. Arabidopsis COP1 protein specifically interacts in vitro with a cytoskeleton-associated protein, CIP1. Proceedings of the National Academy of Sciences of the United States of America 92, 4239-4243.

Mittler R, Finka A, Goloubinoff P. 2012. How do plants feel the heat? Trends in Biochemical Sciences 37, 118-125.
Muller J, Menzel D, Samaj J. 2007. Cell-type-specific disruption and recovery of the cytoskeleton in Arabidopsis thaliana epidermal root cells upon heat shock stress. Protoplasma 230, 231-242.

Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S. 2006. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant Journal 48, 535-547.

Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf K-D. 2001. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress and Chaperones 6, 177.

Parsons HT, Christiansen K, Knierim B, Carroll A, Ito J, Batth TS, Smith-Moritz AM, Morrison S, McInerney P, Hadi MZ, Auer M, Mukhopadhyay A, Petzold CJ, Scheller HV, Loque D, Heazlewood JL. 2012. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiology 159, 12-26.

Patel S, Brkljacic J, Gindullis F, Rose A, Meier I. 2005. The plant nuclear envelope protein MAF1 has an additional location at the Golgi and binds to a novel Golgi-associated coiled-coil protein. Planta 222, 1028-1040.

Perez-Salamo I, Papdi C, Rigo G, Zsigmond L, Vilela B, Lumbreras V, Nagy I, Horvath B, Domoki M, Darula Z, Medzihradszky K, Bogre L, Koncz C, Szabados L. 2014. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiology 165, 319-334.

Prieto-Dapena P, Castano R, Almoguera C, Jordano J. 2006. Improved resistance to controlled deterioration in transgenic seeds. Plant Physiology 142, 1102-1112.

Rana RM, Dong S, Tang H, Ahmad F, Zhang H. 2012. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.). Journal of Experimental Botany 63, 6003-6016.

Ruelland E, Zachowski A. 2010. How plants sense temperature. Environmental and Experimental Botany 69, 225-232.

Saidi Y, Finka A, Goloubinoff P. 2011. Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytologist 190, 556-565.

Satyal SH, Chen D, Fox SG, Kramer JM, Morimoto RI. 1998. Negative regulation of the heat shock transcriptional response by HSBP1. Genes &; Development 12, 1962-1974.

Schagger H. 2006. Tricine-SDS-PAGE. Nature Protocols 1, 16-22.

Scharf KD, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta 1819, 104-119.

Schoffl F, Prandl R, Reindl A. 1998. Regulation of the heat-shock response. Plant Physiology 117, 1135-1141.

Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Doring P. 2006. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Molecular Biology 60, 759-772.

Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Doring P. 2008. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant Journal 53, 264-274.

Seo PJ, Hong SY, Kim SG, Park CM. 2011. Competitive inhibition of transcription factors by small interfering peptides. Trends in Plant Science 16, 541-549.

Staudt AC, Wenkel S. 2011. Regulation of protein function by ''microProteins''. EMBO Reports 12, 35-42.

Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQ, Kadota A, Wada M. 2010. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 107, 8860-8865.

Suri SS, Dhindsa RS. 2008. A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. Plant Cell and Environment 31, 218-226.

Tai LJ, McFall SM, Huang K, Demeler B, Fox SG, Brubaker K, Radhakrishnan I, Morimoto RI. 2002. Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain. Journal of Biological Chemistry 277, 735-745.

von Koskull-Doring P, Scharf KD, Nover L. 2007. The diversity of plant heat stress transcription factors. Trends in Plant Science 12, 452-457.

Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany 61, 199-223.

Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J. 2004. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant Journal 40, 428-438.

Wang LC, Tsai MC, Chang KY, Fan YS, Yeh CH, Wu SJ. 2011. Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. Journal of Experimental Botany 62, 3609-3620.

Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9, 244-252.

Wasteneys GO. 2004. Progress in understanding the role of microtubules in plant cells. Current Opinion in Plant Biology 7, 651-660.

Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y, Ren D, Liu G. 2009. A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochemical Journal 421, 171-180.

Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M. 2007. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. Journal of Biological Chemistry 282, 37794-37804.

Yoo SD, Cho YH, Sheen J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2, 1565-1572.

Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim J-M, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schoffl F, Shinozaki K, Yamaguchi-Shinozaki K. 2011. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics 286, 321-332.

Yu CW, Liu X, Luo M, Chen C, Lin X, Tian G, Lu Q, Cui Y, Wu K. 2011. HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiology 156, 173-184.

Zhao P, Liu F, Wang B, Yu G, Jia P, Liu H. 2013a. AtSec20 is involved in osmotic stress tolerance and AtSec20 mutation unaffects the integrity of intracellular organelles and the anterograde biosynthetic trafficking. Acta Physiologiae Plantarum 35, 1625-1632.

Zhao P, Liu F, Zhang B, Liu X, Wang B, Gong J, Yu G, Ma M, Lu Y, Sun J, Wang Z, Jia P, Liu H. 2013b. MAIGO2 is involved in abscisic acid-mediated response to abiotic stresses and Golgi-to-ER retrograde transport. Physiologia Plantarum 148, 246-260.

Zhu C, Dixit R. 2012. Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins. Protoplasma 249, 887-899.

Zhu Y, Wang Z, Jing Y, Wang L, Liu X, Liu Y, Deng X. 2009. Ectopic over-expression of BhHsf1, a heat shock factor from the resurrection plant Boea hygrometrica, leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco. Plant Molecular Biology 71, 451-467.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊