|  | 
Baniwal SK, Chan KY, Scharf KD, Nover L. 2007. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. Journal of Biological Chemistry 282, 3605-3613.
 Bita CE, Gerats T. 2013. Plant tolerance to high temperature  in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4, 273.
 
 Bjork JK, Sistonen L. 2010. Regulation of the members of the mammalian heat shock factor family. FEBS Journal 277, 4126-4139.
 
 Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143, 251-262.
 
 Clough SJ, Bent AF. 1998. Floral dip: a simplified method  for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743.
 
 Czarnecka-Verner E, Pan S, Salem T, Gurley WB. 2004. Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Molecular Biology 56, 57-75.
 
 Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139, 5-17.
 
 Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. 2005. Cytosolic  ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268-281.
 
 Folkers U, Kirik V, Schobinger U, Falk S, Krishnakumar S,  Pollock MA, Oppenheimer DG, Day I, Reddy AR, Jurgens G, Hulskamp M. 2002. The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. EMBO Journal 21, 1280-1288.
 
 Fortunati A, Piconese S, Tassone P, Ferrari S, Migliaccio F. 2008. A new mutant of Arabidopsis disturbed in its roots, right-handed slanting, and gravitropism defines a gene that encodes a heat-shock factor. Journal  of Experimental Botany 59, 1363-1374.
 
 Frey N, Klotz J, Nick P. 2010. A kinesin with calponin-homology domain is involved in premitotic nuclear migration. Journal of Experimental Botany 61, 3423-3437.
 
 Fu S, Rogowsky P, Nover L, Scanlon MJ. 2006. The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors. Planta 224, 42-52.
 
 Fu S, Scanlon MJ. 2004. Clonal mosaic analysis of EMPTY PERICARP2 reveals nonredundant functions of the duplicated  HEAT  SHOCK  FACTOR  BINDING PROTEINs during maize shoot development. Genetics 167, 1381-1394.
 
 Fu SN, Meeley R, Scanlon MJ. 2002. empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis. Plant Cell 14, 3119-3132.
 
 Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF. 2005. A central role of Arabidopsis  thaliana  ovate  family  proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proceedings of the National Academy of Sciences of the United States of America 102, 4908-4912.
 
 Hong SY, Kim OK, Kim SG, Yang MS, Park CM. 2011. Nuclear import and DNA binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in Arabidopsis. Journal of Biological Chemistry 286, 1659-1668.
 
 Hong SY, Seo PJ, Ryu JY, Cho SH, Woo JC, Park CM. 2013. A competitive peptide inhibitor KIDARI negatively regulates  HFR1 by forming nonfunctional heterodimers in Arabidopsis photomorphogenesis. Molecules and Cells 35, 25-31.
 
 Hsu SF, Jinn TL. 2010. AtHSBP functions in seed development  and the motif is required for subcellular localization and interaction with AtHSFs. Plant Signaling and Behavior 5, 1-3.
 
 Hsu SF, Lai HC, Jinn TL. 2010. Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the  nucleus and is required for seed development in Arabidopsis.  Plant Physiology 153, 773-784.
 
 Hu W, Ma H. 2006. Characterization of a novel putative zinc finger gene MIF1: involvement in multiple hormonal regulation of Arabidopsis development. Plant Journal 45, 399-422.
 
 Hwang SM, Kim DW, Woo MS, Jeong HS, Son YS, Akhter S, Choi GJ, Bahk JD. 2014. Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. Plant Cell and Environment 37, 1202-1222.
 
 Ikeda M, Mitsuda N, Ohme-Takagi M. 2011. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiology 157, 1243-1254.
 
 Jung HS, Crisp PA, Estavillo GM, Cole B, Hong F, Mockler TC, Pogson BJ, Chory J. 2013. Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proceedings of the National Academy of Sciences of the United States of America 110, 14474-14479.
 
 Katschinski DM. 2004. On heat and cells and proteins. Physiology 19, 11-15.
 
 Kim GT, Shoda K, Tsuge T, Cho KH, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H. 2002. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO Journal 21, 1267-1279.
 
 Klotz J, Nick P. 2012. A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. New Phytologist 193, 576-589.
 
 Kotak S, Vierling E, Baumlein H, von Koskull-Doring P. 2007.  A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19, 182-195.
 
 Krepp J, Gelmedin V, Hawdon JM. 2011. Characterisation of hookworm heat shock factor binding protein (HSB-1) during  heat shock and larval activation. International Journal for Parasitology 41, 533-543.
 
 Lau OS, Deng XW. 2012. The photomorphogenic repressors COP1  and DET1: 20 years later. Trends in Plant Science 17, 584-593.
 
 Lee CF, Pu HY, Wang LC, Sayler RJ, Yeh CH, Wu SJ. 2006. Mutation in a homolog of yeast Vps53p accounts for the heat  and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta 224, 330-338.
 
 Li L, Shimada T, Takahashi H, Koumoto Y, Shirakawa M, Takagi J, Zhao X, Tu B, Jin H, Shen Z, Han B, Jia M, Kondo M, Nishimura M, Hara-Nishimura I. 2013. MAG2 and three MAG2-INTERACTING PROTEINs form an ER-localized complex to facilitate storage protein transport in Arabidopsis thaliana. Plant Journal 76, 781-791.
 
 Li L, Shimada T, Takahashi H, Ueda H, Fukao Y, Kondo M, Nishimura M, Hara-Nishimura I. 2006. MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell 18, 3535-3547.
 
 Lindquist S. 1986. The heat-shock response. Annual Review of Biochemistry 55, 1151-1191.
 
 Lindquist S, Craig EA. 1988. The heat-shock proteins. Annual Review of Genetics 22, 631-677.
 
 Liu HC, Liao HT, Charng YY. 2011. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell and Environment 34, 738-751.
 
 Liu X, Xu L, Liu Y, Tong X, Zhu G, Zhang XC, Li X, Rao Z. 2009. Crystal structure of the hexamer of human heat shock factor binding protein 1. Proteins 75, 1-11.
 
 Lupas A, Van Dyke M, Stock J. 1991. Predicting coiled coils from protein sequences. Science 252, 1162-1164.
 
 Magnani E, de Klein N, Nam HI, Kim JG, Pham K, Fiume E, Mudgett MB, Rhee SY. 2014. A comprehensive analysis of microProteins reveals their potentially widespread mechanism of transcriptional regulation. Plant Physiology 165, 149-159.
 
 Matsui M, Stoop CD, von Arnim AG, Wei N, Deng XW. 1995. Arabidopsis COP1 protein specifically interacts in vitro with a cytoskeleton-associated protein, CIP1. Proceedings of the National Academy of Sciences of the United States of America 92, 4239-4243.
 
 Mittler R, Finka A, Goloubinoff P. 2012. How do plants  feel  the  heat?  Trends  in Biochemical Sciences 37, 118-125.
 Muller J, Menzel D, Samaj J. 2007. Cell-type-specific disruption and recovery of the cytoskeleton in Arabidopsis thaliana epidermal root cells upon heat shock stress. Protoplasma 230, 231-242.
 
 Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S. 2006. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant Journal 48, 535-547.
 
 Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf K-D. 2001. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress and Chaperones 6, 177.
 
 Parsons HT, Christiansen K, Knierim B, Carroll A, Ito J, Batth TS, Smith-Moritz AM, Morrison S, McInerney P, Hadi MZ, Auer M, Mukhopadhyay A, Petzold CJ, Scheller HV, Loque D, Heazlewood JL. 2012. Isolation  and  proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiology 159, 12-26.
 
 Patel S, Brkljacic J, Gindullis F, Rose A, Meier I. 2005. The plant nuclear envelope protein MAF1 has an additional location at the Golgi and binds to a novel Golgi-associated coiled-coil protein. Planta 222, 1028-1040.
 
 Perez-Salamo I, Papdi C, Rigo G, Zsigmond L, Vilela B, Lumbreras V, Nagy I, Horvath B, Domoki M, Darula Z, Medzihradszky K, Bogre L, Koncz C, Szabados L. 2014. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiology 165, 319-334.
 
 Prieto-Dapena P, Castano R, Almoguera C, Jordano J. 2006. Improved resistance to controlled deterioration in transgenic seeds. Plant Physiology 142, 1102-1112.
 
 Rana  RM, Dong S, Tang H, Ahmad F, Zhang H. 2012. Functional  analysis  of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.). Journal of Experimental Botany 63, 6003-6016.
 
 Ruelland E, Zachowski A. 2010. How plants sense temperature. Environmental and Experimental Botany 69, 225-232.
 
 Saidi Y, Finka A, Goloubinoff P. 2011. Heat perception and  signalling in plants: a tortuous path to thermotolerance. New Phytologist 190, 556-565.
 
 Satyal SH, Chen D, Fox SG, Kramer JM, Morimoto RI. 1998. Negative regulation of the heat shock transcriptional response by HSBP1. Genes &; Development 12, 1962-1974.
 
 Schagger H. 2006. Tricine-SDS-PAGE. Nature Protocols 1, 16-22.
 
 Scharf KD, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta 1819, 104-119.
 
 Schoffl F, Prandl R, Reindl A. 1998. Regulation of the heat-shock response. Plant Physiology 117, 1135-1141.
 
 Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Doring P. 2006. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in  Arabidopsis. Plant Molecular Biology 60, 759-772.
 
 Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Doring P. 2008. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant Journal 53, 264-274.
 
 Seo PJ, Hong SY, Kim SG, Park CM. 2011. Competitive inhibition of transcription factors by small interfering peptides. Trends in Plant Science 16, 541-549.
 
 Staudt AC, Wenkel S. 2011. Regulation of protein function by ''microProteins''. EMBO Reports 12, 35-42.
 
 Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQ, Kadota A, Wada M. 2010. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 107, 8860-8865.
 
 Suri SS, Dhindsa RS. 2008. A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. Plant Cell and Environment 31, 218-226.
 
 Tai LJ, McFall SM, Huang K, Demeler B, Fox SG, Brubaker K, Radhakrishnan I, Morimoto RI. 2002. Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain. Journal of Biological Chemistry 277, 735-745.
 
 von Koskull-Doring P, Scharf KD, Nover L. 2007. The diversity of plant heat stress transcription factors. Trends in Plant Science 12, 452-457.
 
 Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance  in plants: An overview. Environmental and Experimental Botany 61, 199-223.
 
 Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J. 2004. Visualization of  protein interactions in living plant cells using bimolecular fluorescence complementation. Plant Journal 40, 428-438.
 
 Wang LC, Tsai MC, Chang KY, Fan YS, Yeh CH, Wu SJ. 2011. Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. Journal of Experimental Botany 62, 3609-3620.
 
 Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9, 244-252.
 
 Wasteneys GO. 2004. Progress in understanding the role of microtubules in plant cells. Current Opinion in Plant Biology 7, 651-660.
 
 Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y, Ren D, Liu G. 2009. A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochemical Journal 421, 171-180.
 
 Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M. 2007. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. Journal of Biological Chemistry 282, 37794-37804.
 
 Yoo SD, Cho YH, Sheen J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2, 1565-1572.
 
 Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim J-M, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schoffl F, Shinozaki K, Yamaguchi-Shinozaki K. 2011. Arabidopsis HsfA1 transcription  factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics 286, 321-332.
 
 Yu CW, Liu X, Luo M, Chen C, Lin X, Tian G, Lu Q, Cui Y, Wu K. 2011. HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiology 156, 173-184.
 
 Zhao P, Liu F, Wang B, Yu G, Jia P, Liu H. 2013a. AtSec20 is involved in osmotic stress tolerance and AtSec20 mutation unaffects the integrity of intracellular organelles and the anterograde biosynthetic trafficking. Acta Physiologiae Plantarum 35, 1625-1632.
 
 Zhao P, Liu F, Zhang B, Liu X, Wang B, Gong J, Yu G, Ma M, Lu Y, Sun J, Wang Z, Jia P, Liu H. 2013b. MAIGO2 is involved in abscisic acid-mediated response to abiotic stresses and Golgi-to-ER retrograde transport. Physiologia Plantarum 148, 246-260.
 
 Zhu C, Dixit R. 2012. Functions of the Arabidopsis kinesin  superfamily of microtubule-based motor proteins. Protoplasma 249, 887-899.
 
 Zhu Y, Wang Z, Jing Y, Wang L, Liu X, Liu Y, Deng X. 2009. Ectopic over-expression of BhHsf1, a heat shock factor from the resurrection plant Boea hygrometrica, leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco. Plant Molecular Biology 71, 451-467.
 
 
 |