跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 02:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李長浩
研究生(外文):Chang Hang Li
論文名稱:導電性高分子製備電化學電容器之探討
論文名稱(外文):conducting polymer for electrochemical capacitor
指導教授:喬緒明喬緒明引用關係
指導教授(外文):Shu Min Chiao
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:115
中文關鍵詞:導電性高分子電化學電容器高能量表面積活性劑高分子使用量
外文關鍵詞:PPyElectrochemical capacitor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:617
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電化學電容器是目前受矚目的儲能裝置,由於具有高能量密度與高功率密度之特性,常被利用在需要可以快速大量充放電的地方,如電動汽車的啟動器,UPS不斷電系統等等.本研究以微乳化聚合的方式,利用陰離子與非離子混合型的界面活性劑,以化學聚合方式製備出粒徑約在120~140nm左右,具有核殼結構的Polypyrrole-coated-Poly(methyl-methacrylate)導電性奈米顆粒,這種特殊結構除了可大量減低導電性高分子PPy的用量之外,亦可以產生大量的表面積與類似孔洞的效果。
將導電性核殼顆粒以熱壓方式壓製成薄膜,並根據以下幾個變因:顆粒清洗必要性、機械混合與核殼結構、改變Py添加量、改變氧化劑FeCl3/Py之mole數,以循環伏安法(cyclic voltammetry)與LCR來分別測試在電化學環境中的電容量與在一般環境下聚合物本身的阻抗。在顆粒清洗之必要性,發現顆粒清洗前後電容值相差38F/g,推測原因為氧化劑FeCl3殘留所造成;在機械混合與核殼結構上,發現核殼結構電容量大於機械混合,其原因除了在PMMA的使用量之外,與所生成的表面積有關;此外,當Py添加量越多,使得導電度變高,電子越容易且大量傳遞至電極表面,使得電容量越大;最後本研究並證實氧化劑的使用量有最佳值的存在。
Nano-sized core-shell particles were prepared using a mixed surfactant system in a micro-emulsion polymerization process. The core-shell structure that is composed of polypyrrole shell and PMMA core was verified by SEM and FTIR analysis.
Thin films were prepared from these core-shell particles through the thermo-forming. The electric properties of the films were tested with LCR meter in the room condition. Cyclic voltammograms of the film in KCl electrolytes was also obtained for the potential use of the material as super-capacitors. Effects of the preparing processes, PPy fractions, and the concentration of the oxidants were studied. Our results showed a much superior system using the core-shell particles instead of the pure PPy particles.
摘要……………………………………………………………………III
Abstract………………………………………………………………IV
致謝…………………………………………………………………… V
目錄………………………………………………………………… VII
表目錄………………………………………………………………… XI
圖目錄……………………………………………………………… XII

壹、緒論…………………………………………………………………1
貮、文獻回顧……………………………………………………………3
2-1、電化學電容器……………………………………………………3
2.1.1、電化學電容器之基本原理與發展現況…………………3
2.1.2、電雙層電容(electric double layer capacitor)……5
2.1.3、擬電容器(pseuodocapacitor)…………………………8
2.2、導電性高分子…………………………………………………11
2.2.1、導電性高分子簡介………………………………………11
2.2.2、導電性高分子之能帶理論(band theory)……………13
2.2.3、導電性高分子之導電機構………………………………15
2.2.4、導電性高分子聚吡咯(polypyrrole)………………… 16
2.2.5、聚吡咯的聚合………………………………………… 17
2.3、乳化聚合……………………………………………………… 21
2.3.1、乳化聚合方式的優缺點比較………………………… 23
2.3.2、乳液系統的穩定性…………………………………… 27
2.3.3、乳化聚合之界面活性劑……………………………… 30
2.3.4、導電性高分子之乳化聚合…………………………… 33
2.4、核殼(core-shell)結構之導電性高分子……………………35
參、實驗……………………………………………………………… 39
3.1、實驗藥品………………………………………………………39
3.2、實驗儀器………………………………………………………40
3.3、實驗方法………………………………………………………41
3.3.1、PMMA乳液製備(core latex)………………………… 42
3.3.2、估算合成核殼顆粒各成分所需之量………………… 44
3.3.3、核殼乳液製備(core-shell latex)………………… 47
3.3.4、製備電容器………………………………………………48
3.3.5、電化學測試………………………………………………50
肆、聚合物結構與表面型態之結果分析………………………………52
4.1.1、TGA測試…………………………………………………53
4.1.2、FT-IR測試………………………………………………58
4.1.2.1、PMMA顆粒與PPy顆粒………………………… 58
4.1.2.2、PMMA-PPy核殼組成對FT-IR之影響………… 59
4.1.2.3、機械混合之PPy與PMMA顆粒…………………60
4.1.3、SEM測試…………………………………………………64
4.2、聚合物薄膜結構和表面型態………………………………… 68
4.2.1、FT-IR測試………………………………………………68
4.2.2、SEM測試…………………………………………………72
伍、電性測試………………………………………………………… 80
5.1、顆粒清洗前後之比較………………………………………… 81
5.1.1、LCR測試…………………………………………………81
5.1.2、CV測試………………………………………………… 82
5.2、核殼結構與機械混合之比較………………………………… 88
5.2.1、LCR測試………………………………………………… 88
5.2.2、CV測試………………………………………………… 89
5.3、PPy與PMMA之相對含量比…………………………………… 94
5.3.1、LCR測試…………………………………………………94
5.3.2、CV測試………………………………………………… 95
5.4、Py與FeCl3之mole比…………………………………………99
5.4.1、LCR測試…………………………………………………99
5.4.2、CV測試………………………………………………… 100
陸、結論與建議……………………………………………………… 104
柒、參考文獻…………………………………………………………107
捌、附錄………………………………………………………………114
簡歷……………………………………………………………………115
1.X. Xu. Kobayashhi, H. Ishokaea, M. Datoh, J. Appl. Phys. , 72, 1992
2.Jayashree A., Srinivasan P., D.N. Sathyanarayana., Prog. Polym. Sci., 23, 993, 1998
3.(A)A. Ohtani, M.Abe, M. Ezoe, T. Doi, T. Miyata, A. Miyake, Synth. Met., 55-57, 1993
(B)T. Osaka, K. Naoi, T. Hirabayashi, J. Electrochem. Soc., 134, 1990
(C)陳壽安,化工, 38, 1992
4.白川英樹著,蕭志強譯,被化學所誘惑的白川英樹, 2001
5.Ningping Chen, Liang Hong, European Polymer Journal, 37, 2001
6.宇惠誠, 電氣化學キヤパシタ用電解質, 電氣化學および工業物理化學,66(9), 904-911, 1998
7.A. F. Burke, T. C. Murphy, Material characteristics and the performance of electrochemical capacitors for electric/hybrid vehicle applications, Mater. Res. Soc. Symp. Proc., 393, 375, 1995
8.S.Saranggapani, B. V. Tilak, C. P. Chen, Materials for electrochemical capacitors, J. Electrochem. Soc., 143, 3791,1996
9.G. L. Bullard, H. B. Sierra-Alcazar, H. L. Lee, J. L. Morris, Operating principles of the ultracapacitor, IEEE Trans, Magnet., 25, 102, 1989
10.J. P. Zheng, J. Huang, T. R. Jow, The limitations of energy density for electrochemical capacitors, J. Electrochem. Soc., 144, 2026, 1997
11.A. Nishino, Capacitors: Operating principles, current market and technical trends, J. Power Sources, 60, 137, 1996
12.Frackowiak E., Jurewicz K., Delpeux S., et al., Nanotubular materials for supercapacitor, J., J. Power Sources, 97-98, 822-825, 2001
13.Qiang Feng Xiao, Xiao Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor, Electrochimica Acta, 48, 575-580, 2002
14.Jong Huy Kim, Yong Sung Lee, Ashok K. Sharma, Chen G. Liu, Polypyrrole/carbon composite electrode for high power electrochemical capacitor, Electrochimica Acta, 52, 1727-1732, 2006
15.Raiistrick ID., The electrochemistry of semiconductors and electronics processes and devices, New Jersey, Luduing F Noyes, 1992
16.Zheng J. P., Jow T. R., Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitor, J., J. Electrochem Soc., 142, L6-L8, 1995
17.Mastragostino Marina, Arbizzani Catia, Soavi Francesca, Polymer based supercapacitor, J., J. Power Sources, 97-98, 812-815
18.Ryu Kwang Sun, Kim Kwang Man, Park Naw-guy, et al, Symmetric redox supercapacitor with conducting polyaniline electrode, J., J. Power Sources, 103, 305-309, 2002
19.Fusalba Florence, Gouerec Pascal, Villers Dominque, et al., Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors, J., J. Electrochem Soc., 148(1), A1-A6, 2001
20.Naoi Katsuhiko, Suematsu Shunzo, Manago Ari, Electrochemistry of poly(1,5-diaminoanthr aquinone) and its application in electrochemical capacitor material, J., J. Electrochem Soc., 147(2), 420-426, 2000
21.Natta G., Mazzanti G., Corradini P., Atti Accad Naz., Lince Rend., Sci. Fis., Mat. Natur., 25, 3-10, 1958
22.Walatka V. V. Jr., M. M. Labes, Polysulfur nitride a one dimensional chain with a metallic ground state, Phys. Rev. Leet., 31, 1139, 1973
23.Shirakawa H., Louis E. J., MacDiarmid A. G., Chiang C. K., Heeger A. J., Electrical conductivity in doped polyacetylene, S. Polym., J. Chem. Soc. Chem. Commun., 1098-1101, 1977
24.Somusiri N. L. D., Macdiarmid A. G., Polyaniline characterization as a cathode active material in rechargeable batteries in aqueous electrolytes, J. Appl. Electrochem., 18, 92-95, 1988
25.Kittel C., Introduction to solid state physics 6th ed., John Wiley & Sons, 1986
26.Kanatzidls M. G., conductive polymer, Chem. Eng. News, 3, 222-224, 1990
27.吳偉誠, 以不同界面活性劑行苯胺的乳化聚合, 臺灣高雄, 國立中山大學材料科學研究所碩士論文, 2002
28.陳男銘, 聚苯胺修飾高分子固態電解質氯氣感測器之研究, 國立成功大學化學工程研究所碩士論文, 1997
29.D. Schmeiber, A. Bartl, L. Dunscch, H. Naarmann, W. Gopel, Electronic and magnetion properties of polypyrrole films depending on their one-dimensional and two-dimensional microstructures, Synthetic Metals, 93, 43-58, 1998
30.Nalwa H. S., Handbook of organic conductive molecules and polymers, New York, Joho Wiley, 2, 429, 1997
31.Genies E. M., A. F. Diaz, G. Bidan, Spectroelectrochemical study of polypyrrole films, J. Electroanal. Chem., 149, 101, 1983
32.Steen Skaarup, Lasse Bay, Kamal Vidanapathirana, et al, Simultaneous anion and cation mobility in polypyrrole, J., Solid State Ionics, 159(1/2), 143-147, 2003
33.Satob M. et al,Synth Met, 14, 289, 1986
34.A. Dall’olio, G. Dascola, V. Varacca, V. Bocche, C. R. Acad Sci. C., 267, 433, 1968
35.K. W. OH, H. J. Park, S. H. kim, Journal of Applied Polymer Science vol.91, 3659-3666, 2004
36.Rapi S. et al, Synth. Met., 31, 311, 1989
37.Machida S. et al, Synth. Met., 24, 217, 1989
38.蔡信行主編, 聚合物化學, 台北市, 文京圖書有限公司, 1981
39.耿耀宗,曹同玉主編, 合成聚合物乳液製造與應用技術, 北京, 中國輕工業出版社, 1999
40.Lee J. Y., Kim C. Y., Synth. Met., 32, 263, 1995
41.Duncan J. Shaw原著, 張有義, 郭蘭生編譯, 膠體及界面化學入門, 1999
42.Kang H. C., K. E. Geckeler, Enhanced electrical conductivity of polypyrrole by chemical oxidative polymerization :effect of the preparation technique and polymer additive, Polymer, 41, 6931, 2000
43.Omastora’M., M. Trchova’, J. Pionteck, J. Proke’s, J. Stejskal, Effect of polymerization conductions on the properties of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfesuccinate, Synth. Met., 143, 153, 2004
44.張亞如, 奈米導電性核殼顆粒之合成與分析, 臺灣臺中, 東海大學化學工程所碩士論文, 2002
45.邱煥強, 乳化聚合合成Polypyrrole並製備PPy/Al2O3/Al固態電容器, 臺灣臺中, 東海大學化學工程所碩士論文, 2005
46.F. M. Huijs, F. F. Vercauteren, G. Hadziioannou, Synth. Met., 125, 2002
47.Stuar F. Lascelles, Steven P. Armes, J. Mater. Chem., 7(8), 1997
48. KANUNGO S. B., MISHRA S. K., Thermal dehydration and decomposition of FeCl3.xH2O, Journal of thermal analysis, 46, 5, 1487-1500, 1996
49.Terje A. Skotheim, Hankbook of conducting polymers, New York, Marcel Dekker, INC. 8,267, 1986
50.Charles J. Pouchert, The Aldrich library of FT-IR spectra, ALDRICH CHEMICAL CO., INC., 2565A
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊