|
[1] T. L. Baldwin, L. Mili, M. B. Boisen, Jr., and R. Adapa, Power system observability with minimal phasor measurement placement, IEEE Transactions on Power Systems, 8(2) (1993), 707 – 715. [2] M. B. Boisen, Jr., T. L. Baldwin, and L. Mili, Simulated annealing and graph theory applied to electrical power networks, manuscript, 2000. [3] D. J. Brueni, Minimal PMU placement for graph observability: A Decomposition Approach, Master thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1993. [4] D. J. Brueni and L. S. Heath, The PMU placement problem, SIAM J. Discrete Math., 19(3) (2005), 744 – 761. [5] I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos, New bounds on the size of the minimum feedback vertex set in meshes and butterflies, Inform. Process. Lett., 83 (2002), 275 – 280. [6] C.-C. Chuang, Study on power domination of graphs, Master Thesis, National Taiwan University, Taipei, Taiwan, 2008. [7] W.J. Dally and B. Towles, Principles and practices of interconnection networks, Morgan Kaufmann, Los Altos, CA, 2004. [8] M. Dorfling and M. A. Henning, A note on power domination in grid graphs, Discrete Applied Math., 154 (2006), 1023 – 1027. [9] G. Fertin, E. Godard, and A. Raspaud, Minimum feedback vertex set and acyclic coloring, Inform. Process. Lett., 84 (2002), 131 – 139. [10] P. Festa, P.M. Pardalos, and M.G.C. Resende, Feedback set problems, in: D.Z. Du, P.M. Pardalos (Eds.), in: Handbook of combinatorial optimization (Suppl.), Vol. A, Kluwer Academic Publishers, Dordrecht, 1999, pp. 209 – 258. [11] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998. [12] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, eds., Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998. [13] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning, Domination in graphs applied to electric power networks, SIAM J. Discrete Math., 15(4) (2002), 519 – 529. [14] R. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, Plenum Press, New York, 1972, pp. 85 – 103. [15] F.L. Luccio, Almost exact minimum feedback vertex sets in meshes and butterflies, Inform. Process. Lett., 66 (1998), 59 – 64. [16] F. R. Madelaine and I. A. Stewart, Improved upper and lower bounds on the feedback vertex numbers of grids and butterflies, Discrete Math., 308 (2008), 4144 – 4164. [17] L. Mili, T. Baldwin, and A. Phadke, Phasor measurement placement for voltage and stability monitoring and control, in Proceedings of the EPRI-NSF Workshop on Application of Advanced Mathematics to Power Systems, San Francisco, CA, 1991. [18] D. B. West, Introduction to graph theory, Upper Saddle River, NJ: Prentice Hall. (2001). [19] M. Zhao, L. Kang and G. J. Chang, Power domination in graphs, Discrete Math., 306 (2006), 1812 – 1816.
|