[1] 蔡信行,「二甲醚國際發展趨勢研析」,台灣綜合研究院專題分析報導,2008
[2] C. J. Liu, G. P. Vissokov, B. W.- L. Jang, “Plasma application for more environmentally friendly catalyst preparation,” Catal. Today, 72, 173, 2002.
[3] 楊顯整,「清潔替代燃料二甲醚概述」,財團法人台灣綠色生產基金會專題報導
[4] Japan DME Forum: http://www.dmeforum.jp/about/fuel_e.html
[5] 何曉剛,「二甲醚的生產現況與發展前景」,精細與專用化學品,2005
[6] O. Yasutsugu, “NKK’s environmental solutions: New stage for environment-related Businesses,” 2003.
[7] IDA, International DME Association: http://aboutdme.org/
[8] Volvo BIO-DME, http://www.volvotrucks.com
[9] D.M. Brown, B.L. Bhatt, T.H. Hsiung, J.J. Lewnard, F.J. Waller, “Novel technology for the synthesis of dimethyl ether from syngas,” Catal. Today 8, 279–304, 1991.
[10] J.J. Lewnard, T.H. Hsiung, J.F. White, D.M. Brown, “Single-step synthesis of dimethyl ether in a slurry reactor,” Chem. Eng. Sci., 45, 2735-2741, 1990.
[11] D. B. Clarke, I. SuZuki, A. Bell, “An infrared study of the interactions of CO and CO2 with Cu/SiO2,” J. Catal., 142, 27, 1993.
[12] M. J. Sandoval, A. T. Bell, “Temperature-programmed desorption studies of the interactions of H2, CO, and CO2, with Cu/SiO2,” J. Catal.,144, 227, 1993.
[13] K. K. Bando, K. Sayama, H. Kusama, K. Okabe, H. Arakawa, “In-situ FTIR study on CO2 hydrogenation over catalysts supported on SiO2, Al2O3 and TiO2,” Appl. Catal., 135, 273, 1996.
[14] J. Bao, Z. L. Liu, Y. Zhang, N. Tsubaki, “Preparation of mesoporous Cu/ZnO catalyst and its application in low temperature methanol synthesis,” Catal. Commun., 9, 913, 2008.
[15] M. Kiloa, J. Weigel, A. Wokaunb, R.A. Koeppel, A. Stoecklic, A. Baiker, “Effect of the addition of chromium- and manganese oxides on structural and catalytic properties of copper/zirconia catalysts for the synthesis of methanol from carbon dioxide,” J. Mol. Catal. A, 126, 169, 1997.
[16] J.R. Monnier, M.J. Hanrahan, G. Apai, “A study of the catalytically active copper species in the synthesis of methanol over Cu/Cr oxide,” J. Catal. , 92, 119, 1985.
[17] N. Khandan, M. Kazemeini, M. Aghaziarati, “Synthesis of dimethyl ether over modified H-mordenite zeolite and bifunctional catalysts composed of Cu/ZnO/ZrO2 and modified H-mordenite zeolite in slurry phase,” Catal. Lett., 129, 111, 2009.
[18] A. Venugopal, J. Palgunadi, K. D. Jung, O.S. Joo, C. H. Shin, “Cu-Zn-Cr2O3 catalysts for dimethyl ether synthesis: structure and activity relationship,” Catal. Lett., 123, 142, 2008.
[19] J. H. Fei, Z. Y. Hou, , B. Zhu, H. Lou, X. M. Zheng, “Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu–Mn–Zn catalysts,” Appl. Catal. A, 304, 49, 2006.
[20] F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro, F. Frusteri, “Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol,” J. Catal., 249, 185, 2007.
[21] K. S. Lin, S. Chowhury, H. P. Yeh, W. T. Hong, C. T. Yeh, “Preparation and characterization of CuO/ZnO-Al2O3 catalyst washcoats with CeO2 sols for autothermal reforming of methanol in a microreactor,” Catal. Today, 164, 251, 2011.
[22] L. L. Wang, W. Ding, Y. W. Liu, W. P. Fang, Y. Q. Yang, “Effect of preparation methods of aluminum emulsions on catalytic performance of copper-based catalysts for methanol synthesis from syngas,” J. Nat. Gas Chem., 19, 487, 2010.
[23] L. Wang, L. M. Yang, Y. H. Zhang, W. Ding, S. P. Chen, W. P. Fang, Y. Q. Yang, “Promoting effect of an aluminum emulsion on catalytic performance of Cu-based catalysts for methanol synthesis from syngas,” Fuel Process Technol., 91, 723, 2010
[24] J. L. Li, T. Inui, “Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures,” Appl. Catal. A, 137, 105, 1996.
[25] G. J. Millar, I. H. Holm, J. R. Uwins, J. Drennan, “Characterization of precursors to methanol synthesis catalysts Cu/ZnO system,” J. Chem. Soc., Faraday Trans., 94, 593, 1998.
[26] J. Y Lin, P. Jones, J. Guckert, E. I. Solomon, “Variable photon energy photoelectron spectroscopic study of CO adsorption to coordinatively unsaturated tetrahedral Cu(I) and Zn(II) sites on CuCl(111) and ZnO(1010) surfaces: d10 contributions to CO bonding and activation,” J. Am. Chem. Soc., 113, 8312, 1991
[27] J.C.J. Bart, R.P.A. Sneeden, “Copper-zinc oxide-alumina methanol catalysts revisited,” Catal. Today, 2, 1, 1987.
[28] Y. Kanai, T. Watanabe, T. Fujitani, T. Uchijima, J. Naka-mura, “The synergy between Cu and ZnO in methanol synthesis catalysts,” Catal. Lett., 38, 157, 1996.
[29] H.Y. Chen, S.P. Lau, L. Chen, J. Lin, C.H.A. Huan, K.L. Tan, J.S. Pan, “Synergism between Cu and Zn sites in Cu/Zn catalysts formethanol synthesis,” Appl. Surf. Sci., 152, 193, 1999.
[30] H. Y. Chen, L. Chen, J. Lin, K. L. Tan, “Comparative surface studies of high-Zn-level and commercial Cu/ZnO/Al2O3 Catalysts,” J. Phys. Chem. B, 102, 1994, 1998.
[31] W. J. Shen, Y. Ichihashi, Y. Matsumura, “Low temperature methanol synthesis from carbon monoxide and hydrogen over ceria supported copper catalyst,” Appl. Catal. A, 282, 221, 2005.
[32] B. Chapman, “Glow discharge process,” John Wiley &; Sons, 2010.
[33] 楊順文, 「電漿聚合碳氮層-TPX複合膜應用於氧氮分離之研究」, 私立中原大學碩士論文, pp 1-122, 2002[34] 魏大欽,「電漿技術-中原大學上課講義」, pp. 1-153, 2008.
[35] 林以穠,「氦氣與氙氣之添加對電感偶和式六氟化硫電漿性質之研究」, 私立中原大學碩士論文, pp 1-137, 2009.[36] 鄭為允,「以高溫微波電漿火炬轉化四氟甲烷與六氟化硫之研究」, 私立中原大學碩士論文, pp 1-106, 2007[37] C. J. Liu, Kailu Yu, Y. P. Zhang, Xinli Zhu, Fei He, B. Eliasson, “Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion,” Appl. Catal. B, 47, 95, (2004).
[38] C. Ratanatawanate, M. Macias, W. L. Jang, “Promotion effect of nonthermal RF plasma treatment on Ni/Al2O3 for benzene hydorgenation,” Ind. Eng. Chem. Res., 44, 9868-9874, 2005.
[39] J. J. Zou, C. J. Liu, Y. P. Zhang, “Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment,” Lamgmuir, 22, 2334-2339, 2006.
[40] C. J. Liu, J. J. Zou, K. L. Yu, D. G. Cheng, Y. Hen, Jason Zhan, C. Ratanatawanate, W. J. Jang, “Plasma application for more environmentally friendly catalyst preparation,” Pure Appl. Chem., 78, 1227-1238, 2006
[41] D. G. Tong, J. Y. Hu, W. C, T. Zhang, X. Y. Ji, “Effect of glow discharge plasma treatment on amorphous Co-B catalyst,” Mater. Lett., 62, 2746-2749, 2008.
[42] P. Y. Kuai, C. J. Liu, P. P. Hou, “Characterization of CuO-ZnO catalyst prepared by decomposition of carbonates using dielectric barrier discharge plasma,” Catal. Lett., 129, 493, 2009.
[43] H. Y. Xu, W. Chu, L. M. Shi, S. Y. Deng, H. Zhang, “Effect of glow discharge plasma on Cu-Co-Al based supported catalysts for higher alcohol synthesis,” React. Kinet. Catal. Lett., 97, 243, 2009.
[44] 阮亮凱,「以非熱電漿處理CuO/ZnO/Al2O3觸媒應用於合成氣合成甲醇之研究」, 國立中央大學碩士論文, pp 1-96, 2009.[45] J. P. Hong, W. Chu, Y. X. Ying, P. A. Chernavskii, A. Khodakov, “Plasma-assisted design of supported cobalt catalysts for Fischer-Tropsch synthesis,” Stud. Surf. Sci. Catal., 175, 253-257, 2010.
[46] M. Foix, C. Guyon, M. Tatoulian, P. D. Costa, “Fluidized bed plasmas reactors for catalyst synthesis and pretreatment application for pollution abatement in stationary and mobile sources,” Adv. Mater. Res., 89-91, 118, 2010.
[47] H. Zhang, W. Chu, H. Y. Xu, J. Zhou, “Plasma assisted preparation of Fe-Cu bimetal catalyst for higher alcohols synthesis from carbon monoxide hydrogenation,” Fuel, 89, 3127-3131, 2010.
[48] 行政院原子能委員會核能研究所物理組提供
[49] Wendt, R. H., Fassel, V. A., “Induction-coupled plasma spectrometric excitation source,” Anal. Chem. pp.920-922, 1965.
[50] O. Hinrichsen, T. Genger, M. Muhler, “Chemisorption of N2O and H2 for the surface determination of copper catalysts,” Chem. Eng. Technol., 956, 23, 2000.
[51] J.W. Evans, M.S. Wainwright, A.J. Bridgewater, D.J. Young, Appl. Catal. 7, 75, 1983.
[52] Bond, G.C., Namijo, S.N., “An improved procedure for estimating the surface area of supported copper catalysts,” Journal of Catalysis., 118, 507, 1989.
[53] 國立中興大學貴重儀器中心 http://www.nchu.edu.tw/~rict/fesem/ref-fe/fe-sem-intro-nchu.htm
[54] van der Grift, C.J.G., Wielers A.F.H., Joghi B.P.J., Van Beijnum J., De Boer M., Versluijs-Helder M., Geus J.W., “Effect of the reduction treatment on the structure and reactivity of silica-supported copperparticles,” Journal of Molecular Catalysis., 131, 178, 1991.
[55] Guerreiro, E.D., O.F. Gorriz, J.B. Rivarola and L.A. Arrua, “Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation,” Appl. Catal. A, 165, 259, 1997.
[56] P. Tristant, Z Ding, Q. B. Trang Vinh, H. Hidaldo, J. L. Jauberteau, J Desmainson, and C. Dong, “Microwave plasma enhanced CVD of aluminum oxide film : OES diagnostics and influence of the RF bias,” Thin Solid Films 390, 51, 2001.
[57] J. W. Coburn and M. J. Chen, “Optical emission spectroscopy of reactive plasmas : a method for correlating emission intensities to reactive particle density,” J. appl. phys., 51, 31, 1980.
[58] H. W. Lim, M. J.Park, S. H. Kang, H. J. Chae, J. W. Bae, K. W. Jun, “Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: Influence of carbon dioxide during hydrogenation,” Ind. Eng. Chem. Res., 48, 10448, 2009.
[59] K.L. Ng, D. Chadwick, B.A. Toseland, “Kinetics and modeling of dimethyl ether synthesis from synthesis gas,” Chem. Eng. Sci., 54, 3587, 1999.
[60] W. Z. Lu, L. H. Teng, W. D. Xiao, “Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor,” Chem. Eng. Sci., 59, 5455, 2004.
[61] J. M. Smith; H. C. Van Ness, “Introduction to chemical engineering thermodynamics: chemical engineering thermodynamics,” 3rd Ed, New York, McGraw Hill, 1976.
[62] Y. R. Zhu, Z. H. Li, Y. H. Zhou, J. Lv and H. T. Wang, “Plasma treatment of Ni and Pt catalysts for partial oxidation of methane,” React. Kinet. Catal. L., 87, 33, 2005.
[63] A. García-Trenco, A. Vidal-Moya, A. Martínez, “Study of the interaction between components in hybrid CuZnAl/HZSM-5 catalysts and its impact in the syngas-to-DME reaction,” Catal. Today, 179, 43, 2012.
[64] NIST Atomic Spectra Database, http://www.nist.gov/pml/data/asd.cfm