跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 13:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉蔚揚
研究生(外文):Wei-Yang Ye
論文名稱:電漿改質銅鋅鋁系觸媒轉化合成氣產製甲醇及二甲醚之研究
論文名稱(外文):Plasma-assisted preparation of Cu/ZnO/Al2O3 catalyst for DME synthesis
指導教授:魏大欽
指導教授(外文):Ta-Chin Wei
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:128
中文關鍵詞:Cu/ZnO/Al2O觸媒合成氣轉化二甲醚電漿改質
外文關鍵詞:Syngas to DMECu/ZnO/Al2O3Plasma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究於Cu/ZnO/Al2O3觸媒製備過程中導入電漿改質程序,以氫氣、氧氣電漿改質鍛燒後之Cu/ZnO/Al2O3觸媒,並嘗試以電漿取代傳統熱鍛燒步驟。電漿改質與電漿鍛燒之觸媒透過BET、XRD、Cu0 surface area、ICP-AES、TGA、FE-SEM分析了解電漿處理程序前後觸媒物化性質的變化;電漿改質與電漿鍛燒程序的同時利用OES電漿放射光譜觀察電漿中物種組成,推測觸媒於電漿環境下可能的反應機制。觸媒經電漿處理後用於合成氣轉化二甲醚反應(STD reaction)以瞭解各觸媒活性差異。 電漿改質鍛燒後觸媒,BET全比表面積均比熱鍛燒觸媒小些,晶相上則無太大差異,由ICP-AES分析結果發現電漿改質有效去除觸媒殘餘不純物,金屬銅比表面積亦略為提升。觸媒活性提升以O2-CP60觸媒最大,CO轉化率達70 %,DME產率2.3 g-DME/g-cat*h大於Blank-C觸媒的1.08 g-DME/g-cat*h;電漿鍛燒觸媒從ICP-AES分析發現隨電漿鍛燒時間的增加,觸媒不純物有漸少的趨勢,但含量仍高於Blank-C觸媒,XRD圖譜上亦可觀察到仍有前驅物型態結晶,但CuO晶粒有變小、分散性增加的現象。O2-PC240觸媒於STD反應活性略高於Blank-C觸媒,而H2-PC240觸媒則與Blank-C觸媒相當。 透過實驗數據的回歸,本研究建立了Blank-C與O2-CP60觸媒之反應動力學模型,用以預測不同反應條件之出口組成,同時提供產製二甲醚製程最適化之參考。由動力學模型計算目前製程之最佳化參數,反應溫度應增加至310℃左右,反應壓力越高壓越利於DME產率,合成氣最佳進料流量在200 sccm,H2/CO最佳比例約在2.2至2.4之間。
In this work, a novel radio frequency (RF) glow discharge plasma modified Cu/ZnO/Al2O3 catalysts were prepared by conventional coprecipitation method, with the goal to improve its performance on the dimethly ether synthesis from syngas. Not only plasma modified process, the feasibility of using plasma to replace traditional calcination process were also investigated. To further understand the interplay between plasma species and catalyst surface, we used optical emission spectroscopy (OES) as a diagnostic tool to observe the concentration of active species in the plasma. The results show that although the catalysts’ BET surface areas after plasma modification or plasma calcination were lower than the traditional-calcined and non-calcined catalyst, but the copper surface area and metal dispersion of the catalysts increased after plasma modification. By the cross examination between OES diagnostics and ICP/AES analysis, we confirmed that plasma is responsible for the decomposition of carbonates and impurity which contented in the catalyst. The catalytic performances of H2, O2 plasma modified catalysts (after calcination) are better than traditional-calcined catalyst. Moreover, the catalyst activity enhanced after O2 plasma calcination which compared with traditional-calcined catalyst, due to the remarkable decrease of the copper oxide crystalline size according to XRD analysis. A kinetic model were also established for the dimethly ether synthesis from syngas over the catalyst. The kinetic parameters of the model reactions were determined by regression from experimental data. The kinetic model was found to predict well on the product flowrate and reactant conversion of syngas to DME (STD) reaction under different conditions (temperature, pressure, syngas feed ratio, etc.), which is required for future reactor design and optimization of DME synthesizing process.
總目錄
摘要 ........................................................................................................................ I
Abstract ............................................................................................................... II
誌謝 ..................................................................................................................... III
總目錄 ................................................................................................................. IV
表目錄 ................................................................................................................ VII
圖目錄 ................................................................................................................. IX
第一章 前言 ...................................................................................................... 1
1-1 研究源起 .............................................................................................. 1
1-2 研究內容 .............................................................................................. 2
第二章 文獻回顧 .............................................................................................. 3
2-1 二甲醚應用與發展現況 ....................................................................... 3
2-1.1 二甲醚性質與應用 .................................................................... 3
2-1.2 二甲醚發展現況 ........................................................................ 6
2-2 二甲醚合成與觸媒製備 ....................................................................... 8
2-2.1 二甲醚合成反應概述 ................................................................ 8
2-2.2 觸媒開發與反應機制探討 ...................................................... 10
2-3 電漿簡介 .............................................................................................. 13
2-3.1 電漿原理 .................................................................................. 13
2-3.2 低壓電漿 .................................................................................. 16
2-4 電漿改質觸媒研究近況 ..................................................................... 20
第三章 研究方法與儀器原理 ........................................................................ 27
3-1 研究目的 .............................................................................................. 27
3-2 實驗步驟 .............................................................................................. 29
3-2.1 觸媒製備 .................................................................................. 29
3-2.2 電漿改質系統與改質實驗 ...................................................... 30
3-2.3 合成氣轉化二甲醚 .................................................................. 34
3-3 儀器原理 .............................................................................................. 36
3-3.1 比表面積分析儀 ...................................................................... 36
3-3.2 感應耦合電漿原子放射光譜儀 .............................................. 38
3-3.3 熱重分析儀 .............................................................................. 39
3-3.4 X射線繞射儀 ............................................................................ 40
3-3.5 氧化亞氮解離吸附測試 .......................................................... 42
3-3.6 場效發射式掃描電子顯微鏡 .................................................. 43
3-3.7 電漿放射光譜儀 ...................................................................... 45
3-3.8 反應動力學模型建立 .............................................................. 47
第四章 結果與討論 ........................................................................................ 50
4-1 觸媒物性鑑定...................................................................................... 50
4-1.1 BET 觸媒全表面積量測 .......................................................... 50
4-1.2 金屬銅表面積量測 .................................................................. 53
4-1.3 ICP-AES 觸媒元素組成分析 .................................................. 54
4-1.4 XRD 晶相分析 ......................................................................... 57
4-1.5 觸媒熱重分析 .......................................................................... 60
4-1.6 FE-SEM 分析 ........................................................................... 62
4-1.7 OES電漿放射光譜分析 ........................................................... 67
4-2 觸媒活性測試...................................................................................... 70
4-2.1 電漿改質鍛燒後觸媒活性測試 .............................................. 70
4-2.2 電漿鍛燒觸媒 .......................................................................... 78
4-3 合成氣轉化二甲醚之反應動力學模擬 ............................................. 85
4-3.1 合成氣轉化二甲醚實驗結果 .................................................. 85
4-3.2 動力學模型回歸結果 .............................................................. 90
4-3.3 模型預測與二甲醚製程最適化 .............................................. 96
第五章 結論與建議 ...................................................................................... 106
5-1 結論 .................................................................................................... 106
5-2 建議 .................................................................................................... 108
參考文獻 ........................................................................................................... 109
自述 ................................................................................................................... 116

表目錄
表 2- 1 二甲醚與其他燃料之性質比較 ............................................................ 5
表 2- 2 觸媒前驅物分解溫度整理 .................................................................. 12
表 2- 3 電漿改質觸媒文獻整理 ...................................................................... 26
表 3- 1 實驗設備及型號................................................................................... 32
表 3- 2 實驗用氣體與藥品種類、濃度及來源 .............................................. 33
表 3- 3 分析儀器設備規格及型號 .................................................................. 33
表 3- 4 電漿改質/鍛燒觸媒參數 .................................................................. 33
表 3- 5 理論反應級數範圍 .............................................................................. 49
表 3- 6 帄衡常數與溫度關係 .......................................................................... 49
表 4- 1 電漿改質鍛燒後觸媒之比表面積與孔洞體積、大小 ...................... 51
表 4- 2 電漿處理取代鍛燒之觸媒比表面積與孔洞體積、大小 .................. 52
表 4- 3 電漿改質鍛燒後觸媒之金屬銅表面積與分散性 .............................. 53
表 4- 4 不同電漿改質程序之金屬元素組成 .................................................. 55
表 4- 5不同電漿改質程序之金屬元素組成 ................................................... 56
表 4- 6 各溫度下反應之碳帄衡計算結果 ...................................................... 72
表 4- 7 碳帄衡誤差計算結果 .......................................................................... 72
表 4- 8 碳帄衡誤差計算結果 .......................................................................... 79
表 4- 9 Blank-C觸媒於流量200 sccm實驗之元素帄衡計算 ....................... 86
表 4- 10 Blank-C觸媒於流量300 sccm實驗之元素帄衡計算 ..................... 86
表 4- 11 Blank-C觸媒於流量400 sccm實驗之元素帄衡計算...................... 86
表 4- 12 O2-CP60觸媒於流量200 sccm實驗之元素帄衡計算..................... 87
表 4- 13 O2-CP60觸媒於流量300 sccm實驗之元素帄衡計算..................... 87
表 4- 14 O2-CP60觸媒於流量400 sccm實驗之元素帄衡計算..................... 87
表 4- 15 回歸結果-反應常數與活化能 ........................................................... 91
表 4- 16 回歸結果-反應級數 ........................................................................... 91
表 4- 17 不同反應溫度之帄衡轉化率與選擇率 ............................................ 97
表 4- 18 不同壓力之帄衡轉化率與選擇率 .................................................... 97
表 4- 19 不同進料配比(H2/CO)之帄衡轉化率與選擇率 ............................... 97
表 4- 20 Blank-C觸媒於240℃、不同進料比例反應,轉化率與選擇率變化 ................................................................................................................... 105

圖目錄
圖 2- 1 二甲醚應用示意圖 ................................................................................ 4
圖 2- 2 NKK 直接合成二甲醚程序示意圖 ....................................................... 7
圖 2- 3 二甲醚與其他燃料效率比較 ................................................................ 7
圖 2- 4 一步法/兩步法合成二甲醚示意圖 ....................................................... 8
圖 2- 5 CuO/ZnO/Al2O3觸媒結構型態 左:桿狀結構,右:塊狀堆疊 ...... 11
圖 2- 6 SIMS圖譜 左:觸媒還原後,右:還原後通入合成氣吸附 ........... 11
圖 2- 7 CH2於Cu上氫化,遷移至Zn上反應示意圖 ................................... 12
圖 2- 8 電漿反應機制示意圖 .......................................................................... 15
圖 2- 9 直流式電漿中電流與電壓關係圖 ...................................................... 17
圖 2- 10 交流式電漿生成機制示意圖 ............................................................ 18
圖 2- 11 RF 電漿反應器類型 ........................................................................... 19
圖 2- 12 微波電漿反應器示意圖 .................................................................... 19
圖 2- 13 Pd/HZSM-5觸媒活性、穩定性比較................................................. 21
圖 2- 14 TEM影像 左上:NiO/Ta2O5-C,左下:NiO/ZrO2-C .................... 23
圖 2- 15 金屬-擔體介面結構差異示意圖 ....................................................... 23
圖 2- 16 電漿改質觸媒之可能反應機制示意圖 ............................................ 24
圖 2- 17 流體化床電漿反應器 ........................................................................ 25
圖 2- 18 CO程溫脫附 (1) Fe/Cu/Si-C (2) Fe/Cu/Si-CP (3) Fe/Cu/Si-PC[47] 25
圖 3- 1 研究流程圖 ........................................................................................... 28
圖 3- 2 直立式直管電漿反應器示意圖 .......................................................... 31
圖 3- 3 直立式直管電漿反應器實體圖 .......................................................... 32
圖 3- 4 合成氣轉化二甲醚實驗設備圖 .......................................................... 34
圖 3- 5 氣體分子於孔洞表面吸附行為 .......................................................... 37
圖 3- 6 Perkin Elmer Optima 2100 DV ............................................................. 38
圖 3- 7 TA Instruments TGA-Q500 ................................................................... 39
圖 3- 8 晶格繞射示意圖................................................................................... 41
圖 3- 9 Panalytical X’Pert Pro ........................................................................... 41
圖 3- 10 SEM構造示意圖 ................................................................................ 44
圖 3- 11 電漿放射光譜儀示意圖 ..................................................................... 46
圖 4- 1 電漿取代鍛燒之觸媒之XRD圖 ........................................................ 58
圖 4- 2 電漿改質鍛燒後觸媒之XRD圖 ........................................................ 59
圖 4- 3 電漿取代鍛燒觸媒之熱重分析 .......................................................... 61
圖 4- 4 電漿改質鍛燒後觸媒之熱重分析 ...................................................... 61
圖 4- 5 電漿鍛燒觸媒與未鍛燒觸媒、熱處理鍛燒觸媒之SEM圖, ........ 63
圖 4- 6 電漿改質鍛燒後觸媒之SEM圖,放大倍率30 k ............................ 64
圖 4- 7 電漿鍛燒觸媒與未鍛燒觸媒、熱處理鍛燒觸媒之SEM圖, ........ 65
圖 4- 8 電漿改質鍛燒後觸媒之SEM圖,放大倍率80 k ............................ 66
圖 4- 9 純氫氣電漿與氫氣電漿改質觸媒之OES光譜 ................................. 68
圖 4- 10 純氫氣電漿與氫氣電漿鍛燒觸媒之OES光譜 ............................... 68
圖 4- 11 純氧氣電漿與氧氣電漿改質觸媒之OES光譜 ............................... 69
圖 4- 12 純氧氣電漿與氧氣電漿鍛燒觸媒之OES光譜 ............................... 69
圖 4- 13 Blank-C觸媒之反應物轉化率、二甲醚選擇率與反應溫度作圖... 73
圖 4- 14 H2-CP60觸媒之反應物轉化率、二甲醚選擇率與反應溫度作圖 .. 73
圖 4- 15 H2-CP120觸媒之反應物轉化率、二甲醚選擇率與反應溫度作圖 74
圖 4- 16 H2-CP180觸媒之反應物轉化率、二甲醚選擇率與反應溫度作圖 74
圖 4- 17 O2-CP60觸媒之反應物轉化率、二甲醚選擇率與反應溫度作圖 .. 75
圖 4- 18 不同觸媒各溫度下之CO帄均轉化率 ............................................. 75
圖 4- 19 不同觸媒各溫度下之H2帄均轉化率 .............................................. 76
圖 4- 20 不同觸媒各溫度下之二甲醚帄均產率 ............................................ 76
圖 4- 21 各觸媒於STD反應之二甲醚選擇率 ............................................... 77
圖 4- 22 各觸媒於STD反應之甲醇選擇率 ................................................... 77
圖 4- 23 各觸媒於STD反應之二氧化碳選擇率 ........................................... 78
圖 4- 24 Blank-NC觸媒之反應物轉化率與反應溫度作圖 ............................ 80
圖 4- 25 Blank-C觸媒之反應物轉化率與反應溫度作圖 ............................... 80
圖 4- 26 H2-PC240觸媒之反應物轉化率與反應溫度作圖 ............................ 81
圖 4- 27 O2-PC240觸媒之反應物轉化率與反應溫度作圖 ............................ 81
圖 4- 28 不同觸媒各溫度下之CO帄均轉化率 ............................................. 82
圖 4- 29 不同觸媒各溫度下之H2帄均轉化率 .............................................. 82
圖 4- 30 不同觸媒各溫度下之二甲醚帄均產率 ............................................ 83
圖 4- 31 各觸媒於STD反應之二甲醚選擇率 ............................................... 83
圖 4- 32 各觸媒於STD反應之甲醇選擇率 ................................................... 84
圖 4- 33 各觸媒於STD反應之二氧化碳選擇率 ........................................... 84
圖 4- 34 Blank-C觸媒各流量之反應物轉化率反應溫度作圖 ....................... 88
圖 4- 35 O2-CP60觸媒各流量之反應物轉化率與反應溫度作圖 .................. 89
圖 4- 36 Blank-C觸媒之動力學模型與實驗出口莫耳流率比較(續上頁) .... 93
圖 4- 37 O2-CP60觸媒之動力學模型與實驗出口莫耳流率比較(續上頁) ... 95
圖 4- 38 模型計算反應物轉化率與實驗和帄衡轉化率作圖 ........................ 96
圖 4- 39 動力學預測溫度與反應物轉化率變化 ............................................ 98
圖 4- 40 動力學預測反應壓力與DME產率、選擇率之影響 ..................... 99
圖 4- 41 動力學模型模擬Blank-C觸媒不同觸媒重之出口物種流率 ......... 99
圖 4- 42 動力學模型模擬O2-CP60觸媒不同觸媒重之出口物種流率 ...... 100
圖 4- 43 模型計算不同觸媒重與產物選擇性變化 ...................................... 100
圖 4- 44 不同進料流率下CO轉化率變化 ................................................... 102
圖 4- 45 不同進料流率下H2轉化率變化..................................................... 102
圖 4- 46 Blank-C觸媒不同進料流率與DME產率影響 .............................. 103
圖 4- 47 O2-CP60觸媒不同進料流率與DME產率影響 ............................. 103
圖 4- 48 增加H2通入比例對轉化率之影響................................................. 104
圖 4- 49 增加H2通入比例對DME產率與選擇性之影響 ......................... 104
[1] 蔡信行,「二甲醚國際發展趨勢研析」,台灣綜合研究院專題分析報導,2008
[2] C. J. Liu, G. P. Vissokov, B. W.- L. Jang, “Plasma application for more environmentally friendly catalyst preparation,” Catal. Today, 72, 173, 2002.
[3] 楊顯整,「清潔替代燃料二甲醚概述」,財團法人台灣綠色生產基金會專題報導
[4] Japan DME Forum: http://www.dmeforum.jp/about/fuel_e.html
[5] 何曉剛,「二甲醚的生產現況與發展前景」,精細與專用化學品,2005
[6] O. Yasutsugu, “NKK’s environmental solutions: New stage for environment-related Businesses,” 2003.
[7] IDA, International DME Association: http://aboutdme.org/
[8] Volvo BIO-DME, http://www.volvotrucks.com
[9] D.M. Brown, B.L. Bhatt, T.H. Hsiung, J.J. Lewnard, F.J. Waller, “Novel technology for the synthesis of dimethyl ether from syngas,” Catal. Today 8, 279–304, 1991.
[10] J.J. Lewnard, T.H. Hsiung, J.F. White, D.M. Brown, “Single-step synthesis of dimethyl ether in a slurry reactor,” Chem. Eng. Sci., 45, 2735-2741, 1990.
[11] D. B. Clarke, I. SuZuki, A. Bell, “An infrared study of the interactions of CO and CO2 with Cu/SiO2,” J. Catal., 142, 27, 1993.
[12] M. J. Sandoval, A. T. Bell, “Temperature-programmed desorption studies of the interactions of H2, CO, and CO2, with Cu/SiO2,” J. Catal.,144, 227, 1993.
[13] K. K. Bando, K. Sayama, H. Kusama, K. Okabe, H. Arakawa, “In-situ FTIR study on CO2 hydrogenation over catalysts supported on SiO2, Al2O3 and TiO2,” Appl. Catal., 135, 273, 1996.
[14] J. Bao, Z. L. Liu, Y. Zhang, N. Tsubaki, “Preparation of mesoporous Cu/ZnO catalyst and its application in low temperature methanol synthesis,” Catal. Commun., 9, 913, 2008.
[15] M. Kiloa, J. Weigel, A. Wokaunb, R.A. Koeppel, A. Stoecklic, A. Baiker, “Effect of the addition of chromium- and manganese oxides on structural and catalytic properties of copper/zirconia catalysts for the synthesis of methanol from carbon dioxide,” J. Mol. Catal. A, 126, 169, 1997.
[16] J.R. Monnier, M.J. Hanrahan, G. Apai, “A study of the catalytically active copper species in the synthesis of methanol over Cu/Cr oxide,” J. Catal. , 92, 119, 1985.
[17] N. Khandan, M. Kazemeini, M. Aghaziarati, “Synthesis of dimethyl ether over modified H-mordenite zeolite and bifunctional catalysts composed of Cu/ZnO/ZrO2 and modified H-mordenite zeolite in slurry phase,” Catal. Lett., 129, 111, 2009.
[18] A. Venugopal, J. Palgunadi, K. D. Jung, O.S. Joo, C. H. Shin, “Cu-Zn-Cr2O3 catalysts for dimethyl ether synthesis: structure and activity relationship,” Catal. Lett., 123, 142, 2008.
[19] J. H. Fei, Z. Y. Hou, , B. Zhu, H. Lou, X. M. Zheng, “Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu–Mn–Zn catalysts,” Appl. Catal. A, 304, 49, 2006.
[20] F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro, F. Frusteri, “Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol,” J. Catal., 249, 185, 2007.
[21] K. S. Lin, S. Chowhury, H. P. Yeh, W. T. Hong, C. T. Yeh, “Preparation and characterization of CuO/ZnO-Al2O3 catalyst washcoats with CeO2 sols for autothermal reforming of methanol in a microreactor,” Catal. Today, 164, 251, 2011.
[22] L. L. Wang, W. Ding, Y. W. Liu, W. P. Fang, Y. Q. Yang, “Effect of preparation methods of aluminum emulsions on catalytic performance of copper-based catalysts for methanol synthesis from syngas,” J. Nat. Gas Chem., 19, 487, 2010.
[23] L. Wang, L. M. Yang, Y. H. Zhang, W. Ding, S. P. Chen, W. P. Fang, Y. Q. Yang, “Promoting effect of an aluminum emulsion on catalytic performance of Cu-based catalysts for methanol synthesis from syngas,” Fuel Process Technol., 91, 723, 2010
[24] J. L. Li, T. Inui, “Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures,” Appl. Catal. A, 137, 105, 1996.
[25] G. J. Millar, I. H. Holm, J. R. Uwins, J. Drennan, “Characterization of precursors to methanol synthesis catalysts Cu/ZnO system,” J. Chem. Soc., Faraday Trans., 94, 593, 1998.
[26] J. Y Lin, P. Jones, J. Guckert, E. I. Solomon, “Variable photon energy photoelectron spectroscopic study of CO adsorption to coordinatively unsaturated tetrahedral Cu(I) and Zn(II) sites on CuCl(111) and ZnO(1010) surfaces: d10 contributions to CO bonding and activation,” J. Am. Chem. Soc., 113, 8312, 1991
[27] J.C.J. Bart, R.P.A. Sneeden, “Copper-zinc oxide-alumina methanol catalysts revisited,” Catal. Today, 2, 1, 1987.
[28] Y. Kanai, T. Watanabe, T. Fujitani, T. Uchijima, J. Naka-mura, “The synergy between Cu and ZnO in methanol synthesis catalysts,” Catal. Lett., 38, 157, 1996.
[29] H.Y. Chen, S.P. Lau, L. Chen, J. Lin, C.H.A. Huan, K.L. Tan, J.S. Pan, “Synergism between Cu and Zn sites in Cu/Zn catalysts formethanol synthesis,” Appl. Surf. Sci., 152, 193, 1999.
[30] H. Y. Chen, L. Chen, J. Lin, K. L. Tan, “Comparative surface studies of high-Zn-level and commercial Cu/ZnO/Al2O3 Catalysts,” J. Phys. Chem. B, 102, 1994, 1998.
[31] W. J. Shen, Y. Ichihashi, Y. Matsumura, “Low temperature methanol synthesis from carbon monoxide and hydrogen over ceria supported copper catalyst,” Appl. Catal. A, 282, 221, 2005.
[32] B. Chapman, “Glow discharge process,” John Wiley &; Sons, 2010.
[33] 楊順文, 「電漿聚合碳氮層-TPX複合膜應用於氧氮分離之研究」, 私立中原大學碩士論文, pp 1-122, 2002
[34] 魏大欽,「電漿技術-中原大學上課講義」, pp. 1-153, 2008.
[35] 林以穠,「氦氣與氙氣之添加對電感偶和式六氟化硫電漿性質之研究」, 私立中原大學碩士論文, pp 1-137, 2009.
[36] 鄭為允,「以高溫微波電漿火炬轉化四氟甲烷與六氟化硫之研究」, 私立中原大學碩士論文, pp 1-106, 2007
[37] C. J. Liu, Kailu Yu, Y. P. Zhang, Xinli Zhu, Fei He, B. Eliasson, “Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion,” Appl. Catal. B, 47, 95, (2004).
[38] C. Ratanatawanate, M. Macias, W. L. Jang, “Promotion effect of nonthermal RF plasma treatment on Ni/Al2O3 for benzene hydorgenation,” Ind. Eng. Chem. Res., 44, 9868-9874, 2005.
[39] J. J. Zou, C. J. Liu, Y. P. Zhang, “Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment,” Lamgmuir, 22, 2334-2339, 2006.
[40] C. J. Liu, J. J. Zou, K. L. Yu, D. G. Cheng, Y. Hen, Jason Zhan, C. Ratanatawanate, W. J. Jang, “Plasma application for more environmentally friendly catalyst preparation,” Pure Appl. Chem., 78, 1227-1238, 2006
[41] D. G. Tong, J. Y. Hu, W. C, T. Zhang, X. Y. Ji, “Effect of glow discharge plasma treatment on amorphous Co-B catalyst,” Mater. Lett., 62, 2746-2749, 2008.
[42] P. Y. Kuai, C. J. Liu, P. P. Hou, “Characterization of CuO-ZnO catalyst prepared by decomposition of carbonates using dielectric barrier discharge plasma,” Catal. Lett., 129, 493, 2009.
[43] H. Y. Xu, W. Chu, L. M. Shi, S. Y. Deng, H. Zhang, “Effect of glow discharge plasma on Cu-Co-Al based supported catalysts for higher alcohol synthesis,” React. Kinet. Catal. Lett., 97, 243, 2009.
[44] 阮亮凱,「以非熱電漿處理CuO/ZnO/Al2O3觸媒應用於合成氣合成甲醇之研究」, 國立中央大學碩士論文, pp 1-96, 2009.
[45] J. P. Hong, W. Chu, Y. X. Ying, P. A. Chernavskii, A. Khodakov, “Plasma-assisted design of supported cobalt catalysts for Fischer-Tropsch synthesis,” Stud. Surf. Sci. Catal., 175, 253-257, 2010.
[46] M. Foix, C. Guyon, M. Tatoulian, P. D. Costa, “Fluidized bed plasmas reactors for catalyst synthesis and pretreatment application for pollution abatement in stationary and mobile sources,” Adv. Mater. Res., 89-91, 118, 2010.
[47] H. Zhang, W. Chu, H. Y. Xu, J. Zhou, “Plasma assisted preparation of Fe-Cu bimetal catalyst for higher alcohols synthesis from carbon monoxide hydrogenation,” Fuel, 89, 3127-3131, 2010.
[48] 行政院原子能委員會核能研究所物理組提供
[49] Wendt, R. H., Fassel, V. A., “Induction-coupled plasma spectrometric excitation source,” Anal. Chem. pp.920-922, 1965.
[50] O. Hinrichsen, T. Genger, M. Muhler, “Chemisorption of N2O and H2 for the surface determination of copper catalysts,” Chem. Eng. Technol., 956, 23, 2000.
[51] J.W. Evans, M.S. Wainwright, A.J. Bridgewater, D.J. Young, Appl. Catal. 7, 75, 1983.
[52] Bond, G.C., Namijo, S.N., “An improved procedure for estimating the surface area of supported copper catalysts,” Journal of Catalysis., 118, 507, 1989.
[53] 國立中興大學貴重儀器中心 http://www.nchu.edu.tw/~rict/fesem/ref-fe/fe-sem-intro-nchu.htm
[54] van der Grift, C.J.G., Wielers A.F.H., Joghi B.P.J., Van Beijnum J., De Boer M., Versluijs-Helder M., Geus J.W., “Effect of the reduction treatment on the structure and reactivity of silica-supported copperparticles,” Journal of Molecular Catalysis., 131, 178, 1991.
[55] Guerreiro, E.D., O.F. Gorriz, J.B. Rivarola and L.A. Arrua, “Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation,” Appl. Catal. A, 165, 259, 1997.
[56] P. Tristant, Z Ding, Q. B. Trang Vinh, H. Hidaldo, J. L. Jauberteau, J Desmainson, and C. Dong, “Microwave plasma enhanced CVD of aluminum oxide film : OES diagnostics and influence of the RF bias,” Thin Solid Films 390, 51, 2001.
[57] J. W. Coburn and M. J. Chen, “Optical emission spectroscopy of reactive plasmas : a method for correlating emission intensities to reactive particle density,” J. appl. phys., 51, 31, 1980.
[58] H. W. Lim, M. J.Park, S. H. Kang, H. J. Chae, J. W. Bae, K. W. Jun, “Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: Influence of carbon dioxide during hydrogenation,” Ind. Eng. Chem. Res., 48, 10448, 2009.
[59] K.L. Ng, D. Chadwick, B.A. Toseland, “Kinetics and modeling of dimethyl ether synthesis from synthesis gas,” Chem. Eng. Sci., 54, 3587, 1999.
[60] W. Z. Lu, L. H. Teng, W. D. Xiao, “Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor,” Chem. Eng. Sci., 59, 5455, 2004.
[61] J. M. Smith; H. C. Van Ness, “Introduction to chemical engineering thermodynamics: chemical engineering thermodynamics,” 3rd Ed, New York, McGraw Hill, 1976.
[62] Y. R. Zhu, Z. H. Li, Y. H. Zhou, J. Lv and H. T. Wang, “Plasma treatment of Ni and Pt catalysts for partial oxidation of methane,” React. Kinet. Catal. L., 87, 33, 2005.
[63] A. García-Trenco, A. Vidal-Moya, A. Martínez, “Study of the interaction between components in hybrid CuZnAl/HZSM-5 catalysts and its impact in the syngas-to-DME reaction,” Catal. Today, 179, 43, 2012.
[64] NIST Atomic Spectra Database, http://www.nist.gov/pml/data/asd.cfm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top