跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 18:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:項軍強
研究生(外文):Jun-Qiang Xiang
論文名稱:研究固態酸性觸媒對甘油與正丁醇之反應合成含氧添加劑
論文名稱(外文):Study of Solid acid catalysts for glycerol reacted with n-butanol to synthesize oxygenated additive
指導教授:林定松
指導教授(外文):Tzong-Rong Ling
學位類別:碩士
校院名稱:義守大學
系所名稱:化學工程學系暨生物技術與化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:77
中文關鍵詞:酸性觸媒生質柴油甘油正丁醇
外文關鍵詞:Acid catalystBiodieselGlyceroln-Butanol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自從世界對生質柴油產業之可再生能源需求不斷增加,副產物甘油的過量生產正式成為值得關注的問題。甘油和醇經過醚化反應合成甘油烷基醚在學術研究與工業議題上是項活躍的研究領域,尋找潛在的催化劑與最佳工業參數條件的可能性。在本研究中,使用二種催化劑硫酸鋁和三氟甲基磺酸鉍進行甘油醚化反應在批次式反應器下探討,透過使用正丁醇生產含氧添加劑。詳細反應條件研究包括:醚化反應之參數,如催化劑使用量(反應物總量0.01-20wt%),甘油/正丁醇的莫爾比(1:2-1:6),反應溫度(230-270℃)和反應時間(2-7h)。結果顯示甘油的轉化率(>92%)可以在溫度(230-270℃)的溫度範圍內觀察到。反應在溫和的操作壓力(7-26 kg/cm2)下進行。甘油生產主要產品為單丁基甘油醚(ME),二丁基甘油醚(DE),三丁基甘油醚(TE)。在反應後之產物混合物在室溫下透過冷卻過程使其自動分離成油相與水相溶液。並將產物油相透過簡單的熱重分析儀分析汽油與柴油的組成並定為辛烷值添加劑。透過氣相層析儀(GC)與熱重分析法(TG)來分析油相產物的組成。本研究也將討論觸媒的再循環性。
Since the world’s growing demand for renewable energy in biodiesel industry, overproduction of glycerol is becoming an issue of concern. Etherification of glycerol with alcohol to synthesize the alkyl ethers of glycerol is an active research area of academic and industrial issues to explore the possibility to identify the potential catalysts and optimize the process parameter. In this work, the catalytic etherification of glycerol has been investigated with two kinds of catalyst, Aluminum Sulfate and bismuth(III) trifluoromethanesulfonate, in a batch reactor by using n-butanol to produce oxygenated additives. A detailed study of the reaction conditions includes catalyst loading (0.01-20 wt % total amount of reactants), molar ratio of glycerol/n-butanol (1: 2 to 1: 6), reaction temperature (230-270℃), and reaction time (2-7 h). The results indicate that the high conversion (>92%) of glycerol can be observed at the temperature ranges (230-270℃) and operating pressure (7-25atm). The glycerol products towards mono-butyl-glycerol ether (ME), di-butyl-glycerol ether (DE), and tri-butyl-glycerol ether (TE). After the reaction, the product mixture was automatically separated into an organic phase and an aqueous phase through the cooling process at room temperature overnight. Furthermore, the components in the organic phase can be tailored to an octane booster for gasoline and a diesel-like fuel by a simple distillation. The composition of oil phase products are analyzed by gas chromatography (GC) and thermogravimetric (TG) methods. The recyclability of catalyst are also discussed in this work.
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 生質燃料 2
1.3 甘油的應用 3
1.4 含氧添加劑 4
1.5 酸性觸媒 5
1.5.1 硫酸鋁觸媒介紹 5
1.5.2 三氟甲基磺酸鉍觸媒介紹 6
1.6 甘油轉化的文獻回顧 6
1.7 研究動機 12
第二章 實驗方法 13
2.1 實驗藥品與條件 13
2.2 反應系統 14
2.3 實驗步驟 15
2.4 產物分析 16
2.4.1 SEM-EDS分析 16
2.4.2 氣相層析質譜儀 (GC-Mass) 分析 17
2.4.3 氣相層析儀 (GC) 分析 18
2.4.4 酸價滴定分析 18
2.4.5 熱重分析 19
第三章 以硫酸鋁觸媒催化甘油與正丁醇之醚化反應 22
3.1 使用硫酸鋁觸媒之不同反應條件 22
3.1.1 時間與催化劑用量對反應之響 22
3.1.2 溫度對反應之影響 23
3.1.3 反應物比例對反應之影響 24
3.2 以硫酸鋁觸媒反應之 SEM-EDS 分析 24
3.3 以硫酸鋁觸媒反應之 GC-MASS 分析 26
3.4 以硫酸鋁觸媒反應之 GC 分析 31
3.5 以硫酸鋁觸媒反應之 TG 分析 35
3.6 以硫酸鋁觸媒萃取回收之重複反應分析 38
3.7 以硫酸鋁觸媒反應之酸價分析 39
3.8 以硫酸鋁觸媒催化甘油與正丁醇之醚化結果探討 42
第四章 以三氟甲基磺酸鉍觸媒催化甘油與正丁醇之醚化反應 43
4.1 不同觸媒用量與反應時間分析 43
4.2 以三氟甲基磺酸鉍觸媒反應之 SEM-EDS 分析 45
4.3 三氟甲基磺酸鉍之三種不同觸媒萃取回收流程圖 46
4.4 比較Process II與Process III反應後油層酸價與純水萃取次數關係 47
4.5 Process I、Process II與 Process III反應後油層酸價分析 50
4.6 Process I、Process II與 Process III反應後油產率分析 52
4.7 以三氟甲基磺酸鉍觸媒反應產物之 GC-MASS 分析 54
4.8 Process I、Process II與 Process III反應後油產物之GC分析 55
4.9 以三氟甲基磺酸鉍觸媒催化甘油與正丁醇之醚化結果探討 57
第五章 結論 58
參考文獻 60
[1]. Rahmat, N. Abdullah, A. Z. Mohamed, A. R., “Recent progress on innovative and potential technologies for glycerol transformation into fuel additives”, Renewable and Sustainable Energy Reviews, Vol. 14, pp. 987-1000, (2010)
[2]. Quispe, C. A. G.; Coronado, C. J. R.; Carvalho, J. A., Jr, “Glycerol: Production, consumption, prices, characterization and new trends in combustion”, Renewable and Sustainable Energy Reviews, Vol. 27, pp. 475-493, (2013)
[3]. Ming Shan, Dingkai Li, Yi Jiang, Xudong Yanga, “Re-thinking china''s densified biomass fuel policies: Large or small scale”, Energy Policy, Vol. 93, pp. 119-126, (2016)
[4]. Michael S.A. Bradley, “4-Biomass fuel transport and handling”, Fuel Flexible Energy Generation, pp. 99-120, (2016)
[5]. Víctor Codina Gironès, Stefano Moret, Emanuela Peduzzi, Marco Nasato, François Maréchal, “Optimal use of biomass in large-scale energy systems: Insights for energy policy”, Energy, Vol. 137, pp. 789-797, (2017)
[6]. 樂傳俊、王麗蘇、楊朱少萍2014,“甘油的化學轉化研究概況”,應用化學, vol.31, pp. 367-376, (2014)
[7]. Núbia M. Ribeiro, Angelo C. Pinto, Cristina M. Quintella, Gisele O. da Rocha, Leonardo S. G. Teixeira, Lílian L. N. Guarieiro, Maria do Carmo Rangel, Márcia C. C. Veloso, Michelle J. C. Rezende, Rosenira Serpa da Cruz, Ana Maria de Oliveira, Ednildo A. Torres, and Jailson. de Andrade, “The Role of Additives for Diesel and Diesel Blended (Ethanol or Biodiesel) Fuels: A Review”, Energy & Fuels, pp. 2433-2445, (2007)
[8]. Zhi-Hui Zhang, Rajasekhar Balasubramanian, “Effect of Oxygenated Fuels on Physicochemical and Toxicological Characteristics of Diesel Particulate Emissions”, Environmental Science & Technology, pp. 14805–14813, (2014)
[9]. John C. Kotz, Paul M. Treichel, John Townsend. “Chemistry and Chemical Reactivity.”, Cengage Learning, pp. 695-697, (2011)
[10]. Kauffman, G. B., “The Brønsted-Lowry Acid-Base Concept”, J. Chem. Edu., Vol. 65, pp. 28-31, (1988)
[11]. Busca, Guido, “Acid Catalysts in Industrial Hydrocarbon Chemistry”, Chemical Reviews, Vol. 107, pp. 5366-5410, (2007)
[12]. William E. Luttrell, “Aluminum sulfate”, Journal of Chemical Health and Safety, Vol. 22, pp. 33-35, (2015)
[13]. http://tcta02.blogspot.tw/2010/01/apa-08.html
[14]. Nicholas M. Leonard, Laura C. Wieland, Ram S. Mohan, “Applications of bismuth(III) compounds in organic synthesis”, Tetrahedron, Vol. 58, pp. 8373-8397, (2002)
[15]. http://www.chemicalbook.com/ChemicalProductProperty_CN_CB9854538.htm
[16]. Catia Cannilla, Giuseppe Bonura, Leone Frusteri, Francesco Frusteri, “Batch reactor coupled with water permselective membrane: Study of glycerol etherification reaction with butanol”, Chemical Engineering Journal, Vol. 282, pp. 187-193, (2015)
[17]. Jun Cheng, Tao Li, Na Peng, Rui Huang, Jun-Hu Zhou, Ke-Fa Cen, “Combustion dynamics of biodiesel produced by supercritical methanol transesterification”, Fuel Processing Technology, Vol. 131, pp. 409-413, (2015)
[18]. María Dolores González, Yolanda Cesteros, Pilar Salagre, “Establishing the role of Brønsted acidity and porosity for the catalytic etherification of glycerol with tert-butanol by modifying zeolites”, Applied Catalysis A: General, Vol. 450, pp. 178-188, (2013)
[19]. Kakasaheb Y. Nandiwale, Shivraj E. Patil, and Vijay V. Bokade, “Glycerol Etherification using n-Butanol to Produce Oxygenated Additives for Biodiesel Fuel over H-Beta Zeolite Catalysts”, Energy Technology, Vol. 2, (2014)
[20]. Maraisa Goncalves, Cinthia S. Castro, Luiz C. A. Oliveira, Wagner A. Carvalho, “Green acid catalyst obtained from industrial wastes for glycerol etherification”, Fuel Processing Technology, Vol. 138, pp. 695-703, (2015)
[21]. Fei Liu, Karine De Oliveira Vigier, M. Pera-Titus, Yannick Pouilloux, Jean-Marc Clacens, Floryan De Campo, Fran¸ cois J´erˆome, “Catalytic etherification of glycerol with short chain alkyl alcohols in the presence of Lewis acids”, Green Chemistry, pp. 901-909, (2013)
[22]. Nagabhatla Viswanadham, Sandeep K. Saxena, “Etherification of glycerol for improved production of oxygenates”, Fuel, Vol. 103, pp. 980-986, (2013)
[23]. Bianca P. Pinto, Jéssica T.de Lyra, Júlia A. C. Nascimento, Claudio J. A. Mota, “Ethers of glycerol and ethanol as bioadditives for biodiesel”, Fuel, Vol. 168, pp. 76-80, (2016)
[24]. F. Frusteri, F. Arena, G. Bonura, C. Cannilla, L. Spadaro, O. Di Blasi, “Catalytic etherification of glycerol by tert-butyl alcohol to produce oxygenated additives for diesel fuel”, Applied Catalysis A: General, Vol. 367, pp. 77-83, (2009)
[25]. M. Anitha, S. K. Kamarudin, N. T. Kofli, “The potential of glycerol as a value-added commodity”, Chemical Engineering Journal, Vol. 295, pp. 119-130, (2016)
[26]. Nalan Ozbay, Nuray Oktar, Gulsen Dogu, Timur Dogu, “Activity Comparison of Different Solid Acid Catalysts in Etherification of Glycerol with tert-Butyl Alcohol in Flow and Batch Reactors”, Topics in Catalysis, Vol. 56, pp. 1790-1803, (2013)
[27]. Alexandre Bevilacqua Leoneti, Valquiria Aragão-Leoneti, Sonia Valle Walter Borgesde Oliveira, “Glycerol as a by-product of biodies production in Brazil: Alternatives for the use of unrefined glycerol”, Renewable Energy, Vol. 45, pp. 138-145, (2012)
[28]. Sigrid Répichet, Antoine Zwick, Laure Vendier, Christophe Le Roux, Jacques Dubac, “A practical, cheap and environmentally friendly preparation of bismuth(III) trifluoromethanesulfonate”, Tetrahedron Letters, Vol. 43, pp. 993-995, (2002)
[29]. Antoine C, “Tensions des vapeurs; nouvelle relation entre les tensions et les températures”, Comptes Rendus, Vol. 107, pp. 681-684, 836-837 oin
[30]. Hong-Wen Hsu, Ding-Song Lin, “Study of Solid acid catalysts for glycerol reacted with tert-butyl alcohol to synthesize bio-gasoline and diesel”, (2017)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊