跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳浩哲
研究生(外文):CHEN, HAO-ZHE
論文名稱:Doherty功率放大器設計與數位預失真改善
論文名稱(外文):Doherty Power Amplifier Design with Digital Predistortion
指導教授:吳建華吳建華引用關係
指導教授(外文):WU, JANNE-WHA
口試委員:吳建華張盛富黃尊禧孟慶宗
口試委員(外文):WU, JANNE-WHACHANG, SHENG-FUHHUANG, TZUEN-HSIMENG, CHIN-CHUN
口試日期:2018-07-19
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:65
中文關鍵詞:氮化鎵高電子移動率電晶體Doherty 功率放大器數位預失真誤差振幅向量
外文關鍵詞:Digital Pre-distortionDoherty Power AmplifierError Vector MagnitudeGallium NitrideHigh Electron Mobility Transistors
相關次數:
  • 被引用被引用:1
  • 點閱點閱:648
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
此論文為使用氮化鎵(GaN)高電子移動率電晶體設計一具線性度與效率之功率放大器,此功率放大器的增益約為13 dB,輸出功率為38 dBm。使用Doherty功率放大器的架構,其有著較好的線性度和較高的效率等優點。其架構為利用輸出負載調變技術,結合AB類與C類兩種不同工作狀態的放大器之特性來達成高線性度和高效率。此電路在最終的量測結果為:在頻率3.2 GHz時的雙音輸入訊號小於36 dBm時,三階諧波失真項都可以低於 -30 dBc;而單音輸入為25 dBm,輸出功率為38.2 dBm時有著41.9 %的功率增進效率(PAE)。
第二部分為此功率放大器結合基頻數位預失真的技術來讓線性度的特性更上一層樓,論文研究使用基頻數位預失真的方式改善了具有記憶效應之功率放大器的線性度。在無線通訊系統中,功率放大器在發射器是相當關鍵的元件。其本身的非線性和記憶效應導致頻帶內和頻帶外失真並影響功率效率。基頻數位預失真是補償失真的最有效的方法之一。藉由Keysight公司的SystemVue軟體,透過乙太網路控制訊號產生器,並結合軟體VSA89600抓取訊號分析儀之訊號,將功率放大器透過數位預失真方法得到1.06% (-39.5 dB)的振幅誤差向量值。

In this study, a power amplifier is designed for efficiency and linearity by using gallium nitride high electron mobility transistors. The gain of this power amplifier is about 13 dB and the output power is 38 dBm. The architecture of this power amplifier is based on Doherty topology of which having the advantages of high linearity and efficiency.
Doherty architecture uses active load modulation technology at output port and combines the characteristics with class AB and class C operations to implement high linearity and efficiency. The final result is that the third-order intermodulation distortion being reduced to be lower than -30 dBc when the output power of the two-tone measurement is 36 dBm and the one-tone input power is 25 dBm. The output power is 38.2 dBm as the efficiency being 41.9 % at 3.2 GHz.
The second part of this study is focused on the power amplifier combined with baseband digital pre-distortion methods to improve linearity. This study improves the linearity of power amplifier by taking the memory effects into considerations during employing baseband digital pre-distortion methods. In wireless communication systems, the power amplifier is a crucial component in transmitter. Because of its inherent nonlinear and memory properties, causing signal distorted not only in-band , but also regrowing out-of-band. It affects the power efficiency at the same time. The baseband digital pre-distortion is one of the most effective ways to compensate for distortion. In this study, via Ethernet, Keysight’s SystemVue software was used to control the signal generator and capture the output signals of the power amplifier with the signal analyzer by the software of VSA89600. The resulted power amplifier performance behaves with a EVM value of 1.06% (-39.5 dB) through the assistance of digital pre-distortion.

目錄
摘要 III
ABSTRACT IV
目錄 V
圖目錄 VII
表目錄 X
第一章 序論 1
1.1 研究背景與動機 1
1.2 功率放大器和調變技術 3
1.2.1功率放大器介紹 3
1.2.2功率放大器線性度參數 3
1.2.3調變技術 7
1.3 文獻探討 8
1.4論文架構與貢獻 11
第二章 功率放大器之建立模型和線性化技術 12
2.1 建立模型 12
2.1.1 非記憶性模型 12
2.1.2 記憶性模型 14
2.2 線性化技術 16
2.2.1 功率回退 16
2.2.2 反饋路徑 16
2.2.3 前饋路徑 18
2.2.4 封包消除和恢復 20
2.2.5 預失真技術 21
第三章 高效率高線性度氮化鎵功率放大器 23
3.1 功率放大器相關參數 23
3.1.1 功率放大器增益 23
3.1.2 功率放大器效率 24
3.2 DOHERTY功率放大器理論與分析 26
3.3 DOHERTY功率放大器設計流程 32
3.4 電路模擬與量測結果和討論 38
3.4.1 電路量測架設 38
3.4.2 電路模擬與量測結果 39
3.4.3 結果與討論 41
第四章 數位預失真結合功率放大器 42
4.1 預失真器的種類 42
4.1.1 基頻預失真、中頻預失真和射頻預失真 42
4.1.2 類比預失真和數位預失真 43
4.2 基頻數位預失真器之線性化技術 45
4.2.1鏈路預算 46
4.2.2 數位預失真演算法 47
4.3 實驗架設與量測結果 51
4.3.1 電路量測架設 51
4.3.2 電路量測結果 52
4.3.3結果與討論 60
第五章 結論與未來展望 61
參考文獻 62


[1]W. C. Y. Lee, “Spectrum Efficiency in Cellular,” IEEE Trans. Veh. Technol., vol. 38, no. 2, pp. 69-75, May 1989.
[2]A. Kumar, Y. F. Liu, J. Sengupta and Divya, “Evolution of Mobile Wireless Communication Networks: 1G to 4G,” Int. J. of Electron. & Comm. Technol., vol. 1, no. 1, pp. 68-72, Dec. 2010.
[3]T. Mshvidobadze, “Evolution Mobile Wireless Communication and LTE Networks,” in Proc. AICT at 6th Int. Conf., Tbilisi, Oct. 2012, pp. 1-7.
[4]P. Sharma, “Evolution of Mobile Communication Networks-1G to 5G as well as Future Prospective of Next Generation Communication Network,” Int. J. of Comput. Sci. and Mobile Comput., vol. 2, no. 8, pp. 47-53, Aug. 2013.
[5]Available: http://www.radio-electronics.com/info/rf-technology-design/ber/bit-error-rate-tutorial-definition.php
[6]A. Springer, M. Valkama and G. Hueber, “Digital Signal Processing for Reducing the Effects of RF Imperfections in Radio Devices-An overview,” in Proc. IEEE Int. Symp. Circuits Syst., Paris, Aug. 2010, pp. 813-816.
[7]O. Hammi, F. M. Ghannouchi, N. Boulejfen, A. Harguem and A. Gharsallah, “Analytical Prediction of Spectral Regrowth and Correlated and Uncorrelated Distortion in Multicarrier Wireless Transmitters Exhibiting Memory Effects,” IET Microw., Antennas & Propagat., vol. 4, no. 6, pp. 685-696, June 2010.
[8]Anritsu, “Adjacent Channel Power Ratio (ACPR) Application Note,” Appl. Note, Feb. 2001.
[9]S. Ozev, E. Acar and K. B. Redmond, “Enhanced Error Vector Magnitude (EVM) Measurements for Testing WLAN Transceivers,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, San Jose, Nov. 2006, pp. 210-216.
[10]M. Myslinski, J. S. Kenney, D. Schreurs, M. D. McKinley, K. A. Remley and B. Nauwelaers, “EVM Calculation for Broadband Modulated Signals,” in Proc. ARFTG conf., Orlando, Dec. 2004, pp. 45-52.
[11]F. H. Raab, P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic and N. O. Sokal, “Power Amplifiers and Transmitters for RF and Microwave,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 814-826, March 2002.
[12]F. Mkadem, “Behavioral Modeling and Digital Predistortion of Wide- and Multi-Band Transmitter Systems,” Ph.D. dissertation, Dept. Elect. and Comput. Eng., Waterloo Univ., Ontario, Canada, 2014.
[13]N. Srirattana, A. Raghavan, D. Heo, P. E. Allen and J. Laskar, “Analysis and Design of a High-efficiency Multistage Doherty Power Amplifier for Wireless Communications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 852-860, March 2005.
[14]K. Moon, Y. Cho, J. Kim, S. Jin, B. Park, D. Kim and B. Kim, “Investigation of Intermodulation Distortion of Envelope Tracking Power Amplifier for Linearity Improvement, ” IEEE Trans. Microw. Theory Tech., vol. 63, no. 4, pp. 1324-1333, March 2015.
[15]Y. Y. Huang, W. Woo, H. Jeon, C. H. Lee, and J. S. Kenney, “Compact Wideband Linear CMOS Variable Gain Amplifier for Analog-Predistortion Power Amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 68-79, Jan. 2012.
[16]J. Yi, Y. Yang, M. Park, W. Kang, and Bumman Kim, “Analog Predistortion Linearizer for High-power RF Amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2709-2717, Dec. 2000.
[17]X. Feng, “Efficient Baseband Digital Predistortion Techniques for Linearizing Power Amplifier by Taking into Account Nonlinear Memory Effect,” Ph.D. dissertation, Dept. Sci. Eng., De Nantes Univ., Nantes, France, 2015.
[18]F. Li, “Linearization of Power Amplifier in Wide Band Communication Systems by Digital Baseband Predistortion Technique,” Ph.D. dissertation, Dept. Electron. Eng., De Nantes Univ., Nantes, France, 2015.
[19]N. Messaoudi, M.C Fares, “Complexity Reduced odd-order Memory Polynomial pre-distorter for 400-watt multi-carrier Doherty Amplifier Linearization,” in Proc. IEEE MTT-S Int. Microw. Symp. Digest, Atlanta, June. 2008, pp.419-422.
[20]C. Rapp, “Effect of HPA-nonlinearity on 4-DPSK/OFDM-signal for a digital sound broadcasting system,” in Proc. at 2nd European Conf. on Satellite Comm., Liege, Oct. 22–24, 1991, pp. 179–184.
[21]A. A. M. Saleh, “Frequency‐independent and frequency‐dependent nonlinear models of TWT amplifiers,” IEEE Trans. Comm., vol. 29, no. 11, pp.1715‐1720, Nov. 1981.
[22]J. Tsimbinos and K.V. Lever, “Computational complexity of Volterra based nonlinear compensators,” in Proc. of 8th Workshop on Statistical Signal and Array Process., June. 1996, pp. 387-390.
[23]S. L. Chang and T. Ogunfunmi, “LMS/LMF and RLS Volterra system identification based on nonlinear Wiener model,” in Proc. Int. Symp. Circuits Syst., Monterey, May 1998, pp. 206–209.
[24]T. Liu, S. Boumaiza and F.M. Ghannouchi, “Augmented Hammerstein predistorter for Linearization of broad-band Wireless Transmitters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp.1340–1349, June 2006.
[25]戴光廷,”用於非線性功率放大器之查表數位預失真技術”,碩士論文,電信工程研究所,國立交通大學,民國103年
[26]I. Meier and J. B. Swardt, “Error-feedback for amplifier linearization,” IEEE Comm. and Signal Process., pp. 381–386, Sept. 1998
[27]林世豪, “應用在WiMAX基地台高功率放大器之數位預失真線性化技術研究”,碩士論文,電機工程研究所,國立中山大學,民國97年
[28]L.R. Kahn, “Single-Sideband Transmission by Envelope Elimination and Restoration,” in Proc. of the IRE, July 1952, pp.803–806.
[29]張航, “功率放大器輸出端主動變壓器結構設計與氮化鎵功率放大器線性度分析”, 碩士論文, 電機工程研究所,國立中正大學,民國106年
[30]B. Kim, J. Kim, I. Kim and J. Cha, “The Doherty power amplifier,” IEEE Microw. Mag., vol. 7, no. 5, pp. 42-50, Oct. 2006.
[31]C. Musolff, M. Kamper, Z. Abou-Chahine and G. Fischer, “A linear and efficient Doherty PA at 3.5 GHz,” IEEE Microw. Mag., vol. 14, no. 1, pp. 95–101, Feb. 2013
[32]C. Musolff, M. Kamper, Z. Abou-Chahine and G. Fischer, “Linear and efficient Doherty PA revisited,” IEEE Microw. Mag., vol. 15, no. 1, pp. 73–79, Jan. 2014.
[33]P. E. D Falco, J. Birchall and L. Smith, “Hitting the Sweet Spot: A Single-Ended Power Amplifier Exploiting Class AB Sweet Spots and Optimized Third Harmonic Termination,” IEEE Microw. Mag., vol. 18, no. 1, pp. 63–70, Dec. 2017.
[34]Available:http://www.alldatasheet.com/datasheet.pdf/pdf/799161/CREE/CGH40006P.html Cree
[35]J. R. Macdonald, “Nonlinear Distortion Reduction by Complementary Distortion,” IRE Trans. on Audio, vol. 7, no. 5, pp. 128–133, Sep.-Oct. 1959.
[36]G. Satoh, “Linearizer for high-power traveling-wave tube amplifier,” Trans. Inst. Electron. and Comm. Eng., vol. 62, no. 10, pp. 702–703, Oct. 1979.
[37]A. Ghorbani and M. Sheikhan, “The effect of solid state power amplifiers (SSPAs) nonlinearities on MPSK and M-QAM signal transmission,” in 6th Int. Conf. on Digital Process. of Signals in Comm., Loughborough, Sep. 1991, pp. 193–197.
[38]A. Saleh, “Frequency-Independent and Frequency-Dependent Nonlinear Models of TWT Amplifiers.” IEEE Trans. Comm., vol. 29, no. 11, pp. 1715–1720, Nov. 1981.
[39]D. Xie and Z. Zeng, “An improved adaptive LS algorithm using QR decomposition for digital predistortion,” in Int. Conf. on Automatic Control and Artificial Intelligence, Xiamen, March 2012, pp. 416-419.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top