[1] 陳炫霖,“組成元素對Fe-Cr-Mn 含氮不銹鋼沃斯田鐵化、麻田散鐵相轉變與腐蝕性質之作用研究”, 碩士論文, 逢甲大學,台中市, 台灣 (2000)。[2] 王繼敏,“不銹鋼與金屬腐蝕”,第1-60頁,科技圖書,台北市,台灣 (1990)。
[3] H. Zhenga, X.N. Ye and J.D. Li ,“Effect of carbon content on microstructure and mechanical properties of ot-rolled low carbon 12Cr–Ni stainless steel”, Materials Science and Engineering A, 527, 7407-7412 (2010).
[4] R.W.K. Honeycombe: Steels Microstructure and Properties, 陳皇鈞 譯, 第273-303頁, 全華科技圖書, 台中市, 台灣 (1986).
[5] D.D. Shena, S.H. Songb, Z.X. Yuana and L.Q. Weng, “Effect of solute grain boundary segregation and hardness on the ductile-to-brittle transition for a Cr–Mo low-alloy steel”, Materials Science and Engineering A, 394, 53-59 (2005)
[6]王斌, 票卓新, 李國棟, “超級馬氏體不銹鋼銲接的研究發展” ,新技術工藝熱加工工藝技術與材料研究, 5, 57-61 (2008)。
[7]M.L.G. Byrnes, M. Grujicic and W.S.Owen,“Nitrogen strengthening of a stable austenitic stainless steel”, Acta Metallurgica, 35, 1853-1862 (1987).
[8]E. Werner,“Solid solution and grain size hardening of nitrogen alloyed austenitic steels”,Materials Science and Engineering A, 101, 93-98 (1988).
[9] M. Sakakibara and T. Matsui,“Development of high-strength martensitic stainless steel YUS 550 for architectural use”, Nippon Steel Technical Report, 71, 55-63 (1996).
[10] D. Thibault, P. Bocher and M. Thomas, “Residual stress and microstructure in welds of 13% Cr–4% Ni martensitic stainless steel”, Journal of Materials Processing Technology, 209, 2195-2202 (2009).
[11] A.L. Schaeffler, “Welding dissimilar metals with stainless electrodes”, Iron Age, 162, 72-79 (1948).
[12] D.L. Olson, “Prediction of Austenitic Weld Metal Microstructure and Properties”, Welding Research Supplement, 64, 281-295 (1985).
[13] C.J. Long and W.T. DeLong, “The ferrite content of austenitic stainless steel weld metal”, Welding Journal, 52, 281-297 (1973).
[14] 趙艳君, 孟慶雪, 任學平, 陳錫璋, 冀紅彥, “影響新型低碳馬氏體合金鋼奧氏體晶粒的因素”, 塑性工程學報, 17, 140-145 (2010)。
[15] Y.R. Liu, Y. Dong and Q.L. Yong ,“Effect of Heat Treatment on Microstructure and Property of Cr13 Super Martensitic Stainless Steel”, Journal of Iron and Steel Research, 18, 60-55 (2011).
[16] X.P. Ma, L.J. Wang , B. Qin, C.M. Liu and S.V. Subramanian, “Effect of N on microstructure and mechanical properties of 16Cr5Ni1Mo martensitic stainless steel”, Materials and Design, 34, 74-81 (2012).
[17] P. Wang, S.P. Lu and N.M. Xiao, “Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel”, Materials Science and Engineering A, 527, 3210-3216 (2010).
[18] D. Zou, H. Ying and W. Zhang, “Influence of tempering process on mechanical properties of 00Cr13Ni4Mo supermartensitic stainless steel”, Journal of Iron and Steel Research, 17, 50-54 (2010).
[19] D.S. Leem, Y.D. Lee and J.H. Jun, “Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13% Cr–7% Ni–3% Si martensitic stainless steel”, Scripta Materialia, 45, 767-772 (2001).
[20] S.J. Lee, Y.M. Park and Y.K. Lee , “Reverse transformation mechanism of martensite to austenite in a metastable austenitic alloy”, Materials Science and Engineering A, 515, 32-37 (2009).
[21] Y.K. Lee, H.C. Shin, D.S. Leem, J.Y. Choi, W.Jin and C.S. Choi, “Reverse transformation mechanism of martensite to austenite and amount of retained austenite after reverse transformation in Fe-3Si-1 3Cr-7Ni (wt-%) martensitic stainless steel”, Materials Science and Technology, 19, 393-398 (2003).
[22] P.D. Bilmes, M. Solari and C.L. Llorente , “Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals”, Materials Characterization, 46, 285-296 (2001).
[23] 蔡宗憲,“改良型SUS440系麻田散鐵不銹鋼之熱處理研究”, 碩士論文 , 中華大學, 新竹市, 台灣 (2006)。
[24] H.J. Goldschmidt, “The structure of carbides in alloy steel”, Journal of the Iron and Steel Institute, 160, 345 (1948).
[25] H. Wada, “Thermodynamic properties of carbides in 2.25Cr-1Mo steel at 985 K”, Metallurgical Transactions A, 17, 1585-1592 (1986).
[26] D. Peckner and I.M.Bernstein, Handbook of Stainless Steels, pp. 6-19, McGraw-Hill, UMich (1977).
[27] K.P. Balan and A. Venugopal Reddy, “Austenite precipitation during tempering in 16Cr-2Ni Martensitic stainless steels”, Sarma Scriptanaterialia, 39, 901-905 (1998).
[28] B. Miao, D.O. Northwood, L.C. Lim and M.O. Lai, “Microstructure of tempered AISI 403 stainless steel”, Materials Science and Engineering A, 171, 21-33 (1993).
[29] R. Charlie Brooks, “A metallographic examination of crack-path propagation in embrittled 12% Cr steel”, Materials Characterization, 38, 103-117 (1997).
[30] J. Janovec, M. Svoboda and J. Blach, “Evolution of secondary phases during quenching and tempering 12% Cr steel”, Materials Science and Engineering A, 249, 184-189 (1998).
[31] R.W. Cahn, P. Haasen and E.J. Kramer, “Materials science and technology: a comprehensive treatment” Vol. 7, p.615, Wiley-VCH, Bellingham, WA, U.S.A (1992).
[32] D.J. Thoma and J.H. Perepezko, “A geometric analysis of solubility ranges in Laves phases”, Journal of Alloys and Compounds, 224, 330-341 (1995).
[33] C.T. Liu, J.H. Zhu and M.P. Brady, “Physical metallurgy and mechanical properties of transition-metal Laves phase alloy”, Intermetallics, 8,1119-1129 (2000).
[34] 魯世強, 黃柏云, 賀躍軍, “Laves相合金的物理冶金特性”材料導報,
1, 11-17 (2003)。
[35] K. Maile, “Evaluation of microstructural parameters in 9–12% Cr-steels”, International Journal of Pressure Vessels and Piping, 84, 62-68 (2007).
[36] G. Eggeler, “The effect of long-term creep on particle coarsening in tempered martensite ferritic steels”, Acta Metallurgica, 37, 3225-3234 (1989).
[37] A. Aghajani, Ch. Somsen and G. Eggeler, “On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel”, Acta Metallurgica, 57, 5093-5106 (2009).
[38] A. Kipelova, A. Belyakov and R. Kaibyshev, “Laves phase evolution in a modified P911 heat resistant steel during creep at 923”, Materials Science and Engineering A, 532, 71-77 (2012).
[39] I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova and R. Kaibyshev, “Laves-phase precipitates in a low-carbon 9% Cr martensitic steel during aging and creep at 923 K” , Metallurgical and Materials Transactions A, 615, 153-163 (2014).
[40] K. Yamamoto, Y. Kimura and Y. Mishima, “Effect of Matrix Substructures on Precipitation of the Laves Phase in Fe-Cr-Nb-Ni System”, ISIJ International, 43, 1253-1259 (2003).
[41] M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte and P.P. Choi, “The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels”, Acta Metallurgica, 90, 94-104 (2015).
[42] M.I. Isik ,A. Kostka and G. Eggeler, “On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels”, Acta Materialia, 81, 230-240 (2014).
[43] I. Fedorova, A. Kipelova, A. Belyakov and R. Kaibyshev, “Microstructure Evolution in an Advanced 9 pct Cr Martensitic Steel during Creep at 923 K (650℃)”, Metallurgical and Materials Transactions A, 44, 128-135 (2013).
[44] O. Prat, J. Garcia,D. Rojas, G. Sauthoff and G. Inden, “The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels”, Intermetallics, 32, 362-372 (2013).
[45] A. Aghajani, F. Richter, C. Somsen, S.G. Fries,I. Steinbach and G. Eggeler, “On the formation and growth of Mo-rich Laves phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel” , Scripta Materialia, 61 ,1068-1071 (2009).
[46] Y. Hosoi, N. Wade, S. Kunimitsu, T. Urita and J. Nucl, “Precipitation behavior of laves phase and its effect on toughness of 9Cr-2Mo Ferritic-martensitic steel”, Journal of Nuclear Materials, 461, 141-143 (1986).
[47] 侯晓霞, “淬火温度对M2高速钢力学性能的影响”热加工工艺,
6, 133-134 (2010)。
[48] S. Ghanein, M. Kashefi and M. Mazinani, “Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite–martensite dual-phase steel”, Journal of Magnetism and Magnetic Materials, 356, 103-110 (2014).
[49] 边书, 张玉妥, 王承志,“Fe-Cr-Ni 系相图计算”, 沈阳理工大学学报, 30, 17-21 (2011)。
[50] L. Zhao, T. Guo and G. Ji, “Effect of Trace Boron on Microstructure and Mechanical Properties of Carbon Steel & Stainless Steel”, Hot Working Technology, 40, 56-63 (2011).
[51] Y. Xu, M. Wang and Y. Wang, “Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging”, Journal of Alloys and Compounds, 621, 93-98 (2015).