跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.33) 您好!臺灣時間:2025/11/30 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林芳宇
研究生(外文):Fang-Yu Lin
論文名稱:以蛋白質結構為基礎之合成可行性先導藥物最適化電腦輔助藥物設計
論文名稱(外文):Structure-Based Lead Optimization with Synthetic Accessibility in Computer-Aided Drug Design
指導教授:曾宇鳳
口試委員:鄧哲明方俊民孫仲銘
口試日期:2011-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:111
中文關鍵詞:片段設計結構跳躍式先導藥物最適化以蛋白質結構為基礎設計電腦輔助分子設計電腦輔助合成設計
外文關鍵詞:Fragment-basedScaffold-HoppingLead OptimizationStructure-based Drug DesignComputer-aided Molecular DesignComputer-assisted Synthesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Table of Content
口試委員會審定書......................................................................................................... i
誌謝................................................................................................................................. ii
中文摘要......................................................................................................................... iv
ABSTRACT..................................................................................................................... vi
LIST OF FIGURES........................................................................................................ xi
LIST OF TABLES.......................................................................................................... xiii
CHAPTER 1. Introduction............................................................................................. 1
1.1 Lead optimization in computer-aided drug design.......................................... 1
1.2 Computer-assisted synthesis design................................................................ 3
1.3 New methodologies of lead optimization drug design.................................... 4
1.3.1 Structure-based fragment hopping of lead optimization : LeadOp....... 5
1.3.2 Lead optimization with synthetic accessibility: LeadOp+R................. 6
1.4 Data Sets.......................................................................................................... 7
1.4.1 Mutatnt B-Raf kinase inhibitors............................................................ 8
1.4.2 Human 5-Lipoxygenase inhibitors........................................................ 9
1.4.3 Tie-2 kinase inhibitors......................................................................... 10
CHAPTER 2. LeadOp.................................................................................................... 11
2.1 Introduction of LeadOp system.................................................................. 11
2.2 Materials.................................................................................................... 12
2.3 Algorithm of LeadOp................................................................................. 12
2.3.1 Overall procedure of LeadOp............................................................. 12
2.3.2 Generation of fragments................................................................... 15
2.3.3 Pre-docked fragment database construction..................................... 15
2.3.4 Preparation for optimization............................................................. 16
2.3.5 Selection of fragments to be replaced.............................................. 16
2.3.6 Tabu Search for better replacement and compounds assembly........ 17
2.3.7 Trimming the potential compound library........................................ 17
2.3.8 Molecular dynamics simulations...................................................... 17
2.4 Result and Discussion of LeadOp............................................................ 19
2.4.1 LeadOp for mutant B-Raf kinase inhibitors..................................... 19
2.4.2 LeadOp for Human 5-lipoxygenase inhibitors................................. 28
2.5 Conclsion................................................................................................ 38
CHAPTER 3. LeadOp+R............................................................................................. 40
3.1 Introduction of LeadOp+R system.......................................................... 40
3.2 Materials................................................................................................. 41
3.3 Algorithm of LeadOp+R.......................................................................... 42
3.3.1 Overall procedure of LeadOp+R....................................................... 42
3.3.2 Constructurion of the LeadOp+R reaction database........................... 44
3.3.3 Identify reactant……………………………………………………... 48
3.3.4 Determine reaction rules for each reactant identified.......................... 48
3.3.5 Generation of reaction products based on reaction rules..................... 48
3.3.6 Evaluation of the products for each reaction....................................... 50
3.3.7 Final selection by strcture-based analysis........................................... 51
3.3.8 Molecular dynatmics simulations....................................................... 52
3.4 Result and Discussion of LeadOp+R.......................................................... 54
3.4.1 LeadOp+R optimization with for Tie-2 kinase inhibitors.................. 54
3.4.1.1 Structure-based lead optimization with synthetic routes.......... 54
3.4.1.2 Synthetic routes suggested by LeadOp+R................................ 61
3.4.2 LeadOp+R optimization with for 5-lipoxygenase inhibitors ............. 72
3.4.2.1 Structure-based lead optimization with synthetic routes.......... 72
3.4.2.2 Synthetic routes suggested by LeadOp+R................................ 78
3.5 Comparision of LeadOp and LeadOp+R in the 5-lipoxygenase system.... 91
CHAPTER 4. Conclusion............................................................................................. 93
REFERENCE................................................................................................................ 96
APPENDIX…............................................................................................................. 111

REFERENCE
1.Brown, N.; Lewis, R. A., Exploiting QSAR Methods in Lead Optimization. Curr. Opin. Drug Discov. Dev. 2006, 9, 419-424.
2.Zhang, Q.; Muegge, I., Scaffold Hopping through Virtual Screening Using 2D and 3D Similarity Descriptors: Ranking, Voting, and Consensus Scoring. J. Med. Chem. 2006, 49, 1536-1548.
3.Senger, S., Using Tversky Similarity Searches for Core Hopping: Finding the Needles in the Haystack. J. Chem. Inf. Model. 2009, 49, 1514-1524.
4.Bohm, H.-J.; Flohr, A.; Stahl, M., Scaffold Hopping. Drug Discov. Today 2004, 1, 217-224.
5.Nilakantan, R.; Bauman, N.; Venkataraghavan, R., New Method for Rapid Characterization of Molecular Shapes: Applications in Drug Design. J. Chem. Inf. Comput. Sci. 1993, 33, 79-85.
6.Langer, T.; Krovat, E. M., Chemical Feature-Based Pharmacophores and Virtual Library Screening for Discovery of New Leads. Curr. Opin. Drug Discov. Dev. 2003, 6, 370-376.
7.Sykes, M. J.; Sorich, M. J.; Miners, J. O., Molecular Modeling Approaches for the Prediction of the Nonspecific Binding of Drugs to Hepatic Microsomes. J. Chem. Inf. Model. 2006, 46, 2661-2673.
8.Vogt, M.; Stumpfe, D.; Geppert, H.; Bajorath, J. r., Scaffold Hopping Using Two-Dimensional Fingerprints: True Potential, Black Magic, or a Hopeless Endeavor? Guidelines for Virtual Screening. J. Med. Chem. 2010, 53, 5707-5715.
9.Kirchmair, J.; Distinto, S.; Markt, P.; Schuster, D.; Spitzer, G. M.; Liedl, K. R.; Wolber, G., How To Optimize Shape-Based Virtual Screening: Choosing the Right Query and Including Chemical Information. J. Chem. Inf. Model. 2009, 49, 678-692.
10.Fitzgerald, S. H.; Sabat, M.; Geysen, H. M., Diversity Space and Its Application to Library Selection and Design. J. Chem. Inf. Model. 2006, 46, 1588-1597.
11.Hajduk, P. J.; Greer, J., A Decade of Fragment-Based Drug Design: Strategic Advances and Lessons Learned. Nat. Rev. Drug Discov. 2007, 6, 211-219.
12.Ertl, P., Cheminformatics Analysis of Organic Substituents: Identification of the Most Common Substituents, Calculation of Substituent Properties, and Automatic Identification of Drug-like Bioisosteric Groups. J. Chem. Inf. Comput. Sci. 2002, 43, 374-380.
13.Lewell, X. Q.; Jones, A. C.; Bruce, C. L.; Harper, G.; Jones, M. M.; McLay, I. M.; Bradshaw, J., Drug Rings Database with Web Interface. A Tool for Identifying Alternative Chemical Rings in Lead Discovery Programs. J. Med. Chem. 2003, 46, 3257-3274.
14.Weininger, D., SMILES, A Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31-36.
15.Lewell, X. Q.; Judd, D. B.; Watson, S. P.; Hann, M. M., RECAP – Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry. J. Chem. Inf. Comput. Sci. 1998, 38, 511-522.
16.Fechner, U.; Schneider, G., Flux (2): Comparison of Molecular Mutation and Crossover Operators for Ligand-Based de Novo Design. J. Chem. Inf. Model. 2007, 47, 656-667.
17.Grant, M. A., Protein Structure Prediction in Structure-Based Ligand Design and Virtual Screening. Comb. Chem. High T. Scr. 2009, 12, 940-960.
18.Bergmann, R.; Linusson, A.; Zamora, I., SHOP: Scaffold HOPping by GRID-Based Similarity Searches. J. Med. Chem. 2007, 50, 2708-2717.
19.Goodford, P. J., A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules. J. Med. Chem. 1985, 28, 849-857.
20.Dey, F.; Caflisch, A., Fragment-Based de Novo Ligand Design by Multiobjective Evolutionary Optimization. J. Chem. Inf. Model., 2008, 48, 679-690.
21.Ihlenfeldt, W.-D.; Gasteiger, J., Computer-Assisted Planning of Organic Syntheses: The Second Generation of Programs. Angew. Chem. Int. Ed. Engl. 1996, 34, 2613-2633.
22.Hendrickson, J. B.; Toczko, A. G., Synthesis design logic and the SYNGEN (synthesis generation) program. Pure Appl. Chem. 1988, 60, 1563-1572.
23.Socorro, I. M.; Goodman, J. M., The ROBIA Program for Predicting Organic Reactivity. J. Chem. Inf. Model. 2006, 46, 606-614.
24.Corey, E. J.; Howe, W. J.; Orf, H. W.; Pensak, D. A.; Petersson, G., General Methods of Synthetic Analysis. Strategic Bond Disconnections for Bridged Polycyclic Structures. J. Am. Chem. Soc. 1975, 97, 6116-6124.
25.Corey, E. J.; Jorgensen, W. L., Computer-Assisted Synthetic Analysis. Synthetic Strategies Based on Appendages and The Use of Reconnective Transforms. J. Am. Chem. Soc. 1976, 98, 189-203.
26.Barone, R.; Chanon, M., Search for strategies by computer: the CONAN approach. Application to steroid and taxane frameworks. Tetrahedron 2005, 61, 8916-8923.
27.Hendrickson, J. B.; Grier, D. L.; Toczko, A. G., A logic-based program for synthesis design. J. Am. Chem. Soc. 1985, 107, 5228-5238.
28.Law, J.; Zsoldos, Z.; Simon, A.; Reid, D.; Liu, Y.; Khew, S. Y.; Johnson, A. P.; Major, S.; Wade, R. A.; Ando, H. Y., Route Designer: A Retrosynthetic Analysis Tool Utilizing Automated Retrosynthetic Rule Generation. J. Chem. Inf. Model. 2009, 49, 593-602.
29.Lin, F.-Y.; Tseng, Y. J., LeadOp: Structure-based fragment hopping for lead optimization using pre-docked fragment database. J. Chem. Inf. Model. 2011 [Just Accepted], DOI: 10.1021/ci200136j. Published online: June, 1, 2011
30.Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M., DrugBank: a Knowledgebase for Drugs, Drug Actions and Drug Targets. Nucleic Acids Res. 2008, 36, D901-D906.
31.Orita, M.; Ohno, K.; Niimi, T., Two ''Golden Ratio'' indices in fragment-based drug discovery. Drug Discovery Today 2009, 14, 321-328.
32.Hopkins, A. L.; Groom, C. R.; Alex, A., Ligand Efficiency: A Useful Metric for Lead Selection. Drug Discov. Today 2004, 9, 430-431.
33.Alex, A. A.; Flocco, M. M., Fragment-Based Drug Discovery: What Has It Achieved so Fair? Curr. Top. Med. Chem. 2007, 7, 1544-1567.
34.Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A. J., Recent Developments in Fragment-Based Drug Discovery. J. Med. Chem. 2008, 51, 3661-3680.
35.Ciulli, A.; Williams, G.; Smith, A. G.; Blundell, T. L.; Abell, C., Probing Hot Spots at Protein-Ligand Binding Sites: A Fragment-Based Approach Using Biophysical Methods. J. Med. Chem. 2006, 49, 4992-5000.
36.Saxty, G.; Woodhead, S. J.; Berdini, V.; Davies, T. G.; Verdonk, M. L.; Wyatt, P. G.; Boyle, R. G.; Barford, D.; Downham, R.; Garrett, M. D.; Carr, R. A., Identification of Inhibitors of Protein Kinase B Using Fragment-Based Lead Discovery. J. Med. Chem. 2007, 50, 2293-2296.
37.Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3-25.
38.Smith, A. L.; DeMorin, F. F.; Paras, N. A.; Huang, Q.; Petkus, J. K.; Doherty, E. M.; Nixey, T.; Kim, J. L.; Whittington, D. A.; Epstein, L. F.; Lee, M. R.; Rose, M. J.; Babij, C.; Fernando, M.; Hess, K.; Le, Q.; Beltran, P.; Carnahan, J., Selective Inhibitors of the Mutant B-Raf Pathway: Discovery of a Potent and Orally Bioavailable Aminoisoquinoline. J. Med. Chem. 2009, 52, 6189-6192.
39.Ducharme, Y.; Blouin, M.; Brideau, C.; Chateauneuf, A.; Gareau, Y.; Grimm, E. L.; Juteau, H.; Laliberte, S.; MacKay, B.; Masse, F.; Ouellet, M.; Salem, M.; Styhler, A.; Friesen, R. W., The Discovery of Setileuton, a Potent and Selective 5-Lipoxygenase Inhibitor. ACS Med. Chem. Lett. 2010, 1, 170-174.
40.Hodous, B. L.; Geuns-Meyer, S. D.; Hughes, P. E.; Albrecht, B. K.; Bellon, S.; Bready, J.; Caenepeel, S.; Cee, V. J.; Chaffee, S. C.; Coxon, A.; Emery, M.; Fretland, J.; Gallant, P.; Gu, Y.; Hoffman, D.; Johnson, R. E.; Kendall, R.; Kim, J. L.; Long, A. M.; Morrison, M.; Olivieri, P. R.; Patel, V. F.; Polverino, A.; Rose, P.; Tempest, P.; Wang, L.; Whittington, D. A.; Zhao, H., Evolution of a Highly Selective and Potent 2-(Pyridin-2-yl)-1,3,5-triazine Tie-2 Kinase Inhibitor. J. Med. Chem. 2007, 50, 611-626.
41.Pipaon, C.; Gutierrez, P.; Montero, J. C.; Lorenzo, M.; Eguiraun, A.; De la Fuente, J. A.; Pandiella, A.; Leon, J.; Ortiz, J. M., Mitogen-Activated Protein Kinase Routes as Targets in the Action of Diaza-Anthracene Compounds with a Potent Growth-Inhibitory Effect on Cancer Cells. Mol. Cancer Ther. 2002, 1, 811-819.
42.Wellbrock, C.; Karasarides, M.; Marais, R., The RAF Proteins Take Centre Stage. Nat. Rev. Mol. Cell Bio. 2004, 5, 875-885.
43.Davies, H.; Bignell, G. R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M. J.; Bottomley, W.; Davis, N.; Dicks, N.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B. A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G. J.; Bigner, D. D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J. W. C.; Leung, S. Y.; Yuen, S. T.; Weber, B. L.; Siegler, H. F.; Darrow, T. L.; Paterson, H.; Marais, R.; Marshall, C. J.; Wooster, R.; Stratton, M. R.; Futreal, P. A., Mutations of the BRAF Gene in Human Cancer. Nature 2002, 417, 949-954.
44.Flaherty, K. T.; Puzanov, I.; Kim, K. B.; Ribas, A.; McArthur, G. A.; Sosman, J. A.; O''Dwyer, P. J.; Lee, R. J.; Grippo, J. F.; Nolop, K.; Chapman, P. B., Inhibition of Mutated, Activated BRAF in Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 809-819.
45.Garnett, M. J.; Marais, R., Guilty as Charged: B-RAF Is a Human Oncogene. Cancer Cell 2004, 6, 313-319.
46.Tsai, J.; Lee, J. T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N. K.; Sproesser, K.; Li, L.; Smalley, K. S. M.; Fong, D.; Zhu, Y. L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.; Suzuki, Y.; Luu, C.; Settachatgul, C.; Shellooe, R.; Cantwell, J.; Kim, S. H.; Schlessinger, J.; Zhang, K. Y. J.; West, B. L.; Powell, B.; Habets, G.; Zhang, C.; Ibrahim, P. N.; Hirth, P.; Artis, D. R.; Herlyn, M.; Bollag, G., Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase with Potent Antimelanoma Activity. Proc. Natl. Acad. Sci. USA 2008, 105, 3041-3046.
47.King, A. J.; Patrick, D. R.; Batorsky, R. S.; Ho, M. L.; Do, H. T.; Zhang, S. Y.; Kumar, R.; Rusnak, D. W.; Takle, A. K.; Wilson, D. M.; Hugger, E.; Wang, L. F.; Karreth, F.; Lougheed, J. C.; Lee, J.; Chau, D.; Stout, T. J.; May, E. W.; Rominger, C. M.; Schaber, M. D.; Luo, L. S.; Lakdawala, A. S.; Adams, J. L.; Contractor, R. G.; Smalley, K. S. M.; Herlyn, M.; Morrissey, M. M.; Tuveson, D. A.; Huang, P. S., Demonstration of a Genetic Therapeutic Index for Tumors Expressing Oncogenic BRAF by the Kinase Inhibitor SB-590885. Cancer Res. 2006, 66, 11100-11105.
48.Gerwick, W. H., Structure and Biosynthesis of Marine Algal Oxylipins. BBA-Lipid Lipid Met. 1994, 1211, 243-255.
49.Depetrocellis, L.; Dimarzo, V., Aquatic Invertebrates Open up New Perspectives in Eicosanoid Research: Biosynthesis and Bioactivity. Prostagl. Leuko. Ess. Fatty Acids 1994, 51, 215-229.
50.Yamamoto, S.; Kishimoto, K.; Arakawa, T.; Suzuki, H.; Nakamura, M.; Yoshimoto, T.; Takao, T.; Shimonishi, Y.; Tanabe, T., Arachidonate 12-Lipoxygenases - Catalytic Properties and Regulation of the Enzyme Gene. Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury 3 1997, 407, 191-196.
51.Samuelsson, B.; Dahlen, S. E.; Lindgren, J. A.; Rouzer, C. A.; Serhan, C. N., Leukotrienes and Lipoxins: Structures, Biosynthesis, and Biological Effects. Science 1987, 237, 1171-1176.
52.Dailey, L. A.; Imming, P., 12-Lipoxygenase: Classification, Possible Therapeutic Benefits from Inhibition, and Inhibitors. Curr. Med. Chem. 1999, 6, 389-398.
53.Steele, V. E.; Holmes, C. A.; Hawk, E. T.; Kopelovich, L.; Lubet, R. A.; Crowell, J. A.; Sigman, C. C.; Kelloff, G. J., Lipoxygenase Inhibitors as Potential Cancer Chemopreventives. Cancer Epidem. Biomar. 1999, 8, 467-483.
54.Ivanov, I.; Heydeck, D.; Hofheinz, K.; Roffeis, J.; O''Donnell, V. B.; Kuhn, H.; Walther, M., Molecular Enzymology of Lipoxygenases. Arch. Biochem. Biophys. 2010, 503, 161-174.
55.Woods, J. W.; Evans, J. F.; Ethier, D.; Scott, S.; Vickers, P. J.; Hearn, L.; Heibein, J. A.; Charleson, S.; Singer, II, 5-Lipoxygenase and 5-Lipoxygenase-Activating Protein are Localized in the Nuclear Envelope of Activated Human Leukocytes. Jpn. J. Exp. Med. 1993, 178, 1935-1946.
56.Shaffer, D. N.; Mansmann, P. T., Leukotriene Inhibition and Advances in the Treatment of Asthma: A Pharmacological Review. Pediatr. Asthma. Aller. 1997, 11, 171-179.
57.Yu, Q., The dynamic roles of angiopoietins in tumor angiogenesis. Future Oncology 2005, 1, 475-484.
58.Hasegawa, M.; Nishigaki, N.; Washio, Y.; Kano, K.; Harris, P. A.; Sato, H.; Mori, I.; West, R. I.; Shibahara, M.; Toyoda, H.; Wang, L.; Nolte, R. T.; Veal, J. M.; Cheung, M., Discovery of Novel Benzimidazoles as Potent Inhibitors of TIE-2 and VEGFR-2 Tyrosine Kinase Receptors. J. Med. Chem. 2007, 50, 4453-4470.
59.Oliner, J.; Min, H.; Leal, J.; Yu, D.; Rao, S.; You, E.; Tang, X.; Kim, H.; Meyer, S.; Han, S. J.; Hawkins, N.; Rosenfeld, R.; Davy, E.; Graham, K.; Jacobsen, F.; Stevenson, S.; Ho, J.; Chen, Q.; Hartmann, T.; Michaels, M.; Kelley, M.; Li, L.; Sitney, K.; Martin, F.; Sun, J.-R.; Zhang, N.; Lu, J.; Estrada, J.; Kumar, R.; Coxon, A.; Kaufman, S.; Pretorius, J.; Scully, S.; Cattley, R.; Payton, M.; Coats, S.; Nguyen, L.; Desilva, B.; Ndifor, A.; Hayward, I.; Radinsky, R.; Boone, T.; Kendall, R., Suppression of Angiogenesis and Tumor Growth by Selective Inhibition of Angiopoietin-2. Cancer Cell 2004, 6, 507-516.
60.Huang, H.; Bhat, A.; Woodnutt, G.; Lappe, R., Targeting the ANGPT–TIE2 pathway in malignancy. Nat. Rev. Cancer 2010, 10, 575-585.
61.Dibb, N. J.; Dilworth, S. M.; Mol, C. D., Opinion - Switching on Kinases: Oncogenic Activation of BRAF and the PDGFR Family. Nat. Rev. Cancer 2004, 4, 718-727.
62.Charlier, C.; Henichart, J.-P.; Durant, F.; Wouters, J., Structural Insights into Human 5-Lipoxygenase Inhibition: Combined Ligand-Based and Target-Based Approach. J. Med. Chem. 2005, 49, 186-195.
63.Glover, F., Future Paths for Integer Programming and Links to Artificial Intelligence. Comput. Oper. Res. 1986, 13, 533-549.
64.Kolb, P.; Caflisch, A., Automatic and Efficient Decomposition of Two-Dimensional Structures of Small Molecules for Fragment-Based High-Throughput Docking. J. Med. Chem. 2006, 49, 7384-7392.
65.Dube, D.; Blouin, M.; Brideau, C.; Chan, C. C.; Desmarais, S.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Girard, M.; Girard, Y.; Guay, J.; Riendeau, D.; Tagari, P.; Young, R. N., Quinolines as Potent 5-Lipoxygenase Inhibitors: Synthesis and Biological Profile of L-746,530. Bioorg. Med. Chem. Lett. 1998, 8, 1255-1260.
66.Mano, T.; Okumura, Y.; Sakakibara, M.; Okumura, T.; Tamura, T.; Miyamoto, K.; Stevens, R. W., 4-[5-Fluoro-3-[4-(2-methyl-1H-imidazol-1-yl) benzyloxy]phenyl] -3,4,5,6- tetrahydro-2H-pyran-4-carboxamide, an Orally Active Inhibitor of 5-Lipoxygenase with Improved Pharmacokinetic and Toxicology Characteristics. J. Med. Chem. 2003, 47, 720-725.
67.Ducharme, Y.; Brideau, C.; Dube, D.; Chan, C. C.; Falgueyret, J. P.; Gillard, J. W.; Guay, J.; Hutchinson, J. H.; McFarlane, C. S., Naphthalenic Lignan Lactones as Selective, Nonredox 5-Lipoxygenase Inhibitors. Synthesis and Biological Activity of (Methoxyalkyl)thiazole and Methoxytetrahydropyran Hybrids. J. Med. Chem. 1994, 37, 512-518.
68.Laufer, S. A.; Augustin, J.; Dannhardt, G.; Kiefer, W., (6,7 -Diaryldihydropyrrolizin-5-yl)acetic Acids, a Novel Class of Potent Dual Inhibitors of Both Cyclooxygenase and 5-Lipoxygenase. J. Med. Chem. 1994, 37, 1894-1897.
69.Hutchinson, J. H.; Charleson, S.; Evans, J. F.; Falgueyret, J.-P.; Hoogsteen, K.; Jones, T. R.; Kargman, S.; Macdonald, D.; McFarlane, C. S., Thiopyrano l[2,3,4-c,d]indoles as Inhibitors of 5-Lipoxygenase, 5-Lipoxygenase-Activating Protein, and Leukotriene C4 Synthase. J. Med. Chem. 1995, 38, 4538-4547.
70.Hutchinson, J. H.; Riendeau, D.; Brideau, C.; Chan, C.; Delorme, D.; Denis, D.; Falgueyret, J. P.; Fortin, R.; Guay, J., Substituted Thiopyrano[2,3,4-c,d]indoles as Potent, Selective, and Orally Active Inhibitors of 5-Lipoxygenase. Synthesis and Biological Evaluation of L-691,816. J. Med. Chem. 1993, 36, 2771-2787.
71.Pommery, N.; Taverne, T.; Telliez, A.; Goossens, L.; Charlier, C.; Pommery, J.; Goossens, J.-F.; Houssin, R.; Durant, F.; Henichart, J.-P., New COX-2/5-LOX Inhibitors: Apoptosis-Inducing Agents Potentially Useful in Prostate Cancer Chemotherapy. J. Med. Chem. 2004, 47, 6195-6206.
72.Barbey, S.; Goossens, L.; Taverne, T.; Cornet, J.; Choesmel, V.; Rouaud, C.; Gimeno, G.; Yannic-Arnoult, S.; Michaux, C.; Charlier, C.; Houssin, R.; Henichart, J. P., Synthesis and Activity of a New Methoxytetrahydropyran Derivative as Dual Cyclooxygenase-2/5-Lipoxygenase Inhibitor. Bioorg. Med. Chem. Lett. 2002, 12, 779-782.
73.Majeux, N.; Scarsi, M.; Apostolakis, J.; Ehrhardt, C.; Caflisch, A., Exhaustive Docking of Molecular Fragments with Electrostatic Solvation. Proteins: Struct. Funct. Genet. 1999, 37, 88-105.
74.HyperChem, Version 7.0; Hypercube, Inc.: Gainesville, 2007.
75.Trott, O.; Olson, A. J., Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455-461.
76.Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435-447.
77.Oostenbrink, C.; Soares, T. A.; van der Vegt, N. F. A.; van Gunsteren, W. F., Validation of the 53A6 GROMOS Force Field. Eur. Biophys. J. 2005, 34, 273-284.
78.Berendsen, H. P., JPM; van Gunsteren, WF; Hermans, J., Interaction Models for Water in Relation to Protein Hydration. In Intermolecular Forces; Pullman, B., Ed.; D. Reidel: Dordrecht, The Netherlands. 1981, 331-342.
79.Hammarberg, T.; Zhang, Y. Y.; Lind, B.; Radmark, O.; Samuelsson, B., Mutations at the C-Terminal Isoleucine and Other Potential Iron Ligands of 5-Lipoxygenase. Eur. J. Biochem. 1995, 230, 401-407.
80.Schwarz, K.; Walther, M.; Anton, M.; Gerth, C.; Feussner, I.; Kuhn, H., Structural Basis for Lipoxygenase Specificity. J. Biol. Chem. 2001, 276, 773-779.
81.Charlier, C.; Henichart, J.-P.; Durant, F.; Wouters, J., Structural Insights into Human 5-Lipoxygenase Inhibition:  Combined Ligand-Based and Target-Based Approach. J. Med. Chem. 2005, 49, 186-195.
82.https://www.reaxys.com/
83.Sigma-Alderich Chemie GmbH, Steinheim, GE.
84.JChem 5.4.1.1; ChemAxon Ltd: Budapest, Hungary.
85.Imre, G., Kalszi, A., Jkli, I., and Farkas, .Advanced Automatic Generation of 3D Molecular Structures, presented at the 1st European Chemistry Congress, Budapest, Hungary, 2006.
86.Marvin 5.4.0.1; ChemAxon Ltd: Budapest, Hungary.
87.Bridges, A. J., Chemical inhibitors of protein kinases. Chem. Rev. 2001, 101, 2541-2571.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top