|
REFERENCE 1.Brown, N.; Lewis, R. A., Exploiting QSAR Methods in Lead Optimization. Curr. Opin. Drug Discov. Dev. 2006, 9, 419-424. 2.Zhang, Q.; Muegge, I., Scaffold Hopping through Virtual Screening Using 2D and 3D Similarity Descriptors: Ranking, Voting, and Consensus Scoring. J. Med. Chem. 2006, 49, 1536-1548. 3.Senger, S., Using Tversky Similarity Searches for Core Hopping: Finding the Needles in the Haystack. J. Chem. Inf. Model. 2009, 49, 1514-1524. 4.Bohm, H.-J.; Flohr, A.; Stahl, M., Scaffold Hopping. Drug Discov. Today 2004, 1, 217-224. 5.Nilakantan, R.; Bauman, N.; Venkataraghavan, R., New Method for Rapid Characterization of Molecular Shapes: Applications in Drug Design. J. Chem. Inf. Comput. Sci. 1993, 33, 79-85. 6.Langer, T.; Krovat, E. M., Chemical Feature-Based Pharmacophores and Virtual Library Screening for Discovery of New Leads. Curr. Opin. Drug Discov. Dev. 2003, 6, 370-376. 7.Sykes, M. J.; Sorich, M. J.; Miners, J. O., Molecular Modeling Approaches for the Prediction of the Nonspecific Binding of Drugs to Hepatic Microsomes. J. Chem. Inf. Model. 2006, 46, 2661-2673. 8.Vogt, M.; Stumpfe, D.; Geppert, H.; Bajorath, J. r., Scaffold Hopping Using Two-Dimensional Fingerprints: True Potential, Black Magic, or a Hopeless Endeavor? Guidelines for Virtual Screening. J. Med. Chem. 2010, 53, 5707-5715. 9.Kirchmair, J.; Distinto, S.; Markt, P.; Schuster, D.; Spitzer, G. M.; Liedl, K. R.; Wolber, G., How To Optimize Shape-Based Virtual Screening: Choosing the Right Query and Including Chemical Information. J. Chem. Inf. Model. 2009, 49, 678-692. 10.Fitzgerald, S. H.; Sabat, M.; Geysen, H. M., Diversity Space and Its Application to Library Selection and Design. J. Chem. Inf. Model. 2006, 46, 1588-1597. 11.Hajduk, P. J.; Greer, J., A Decade of Fragment-Based Drug Design: Strategic Advances and Lessons Learned. Nat. Rev. Drug Discov. 2007, 6, 211-219. 12.Ertl, P., Cheminformatics Analysis of Organic Substituents: Identification of the Most Common Substituents, Calculation of Substituent Properties, and Automatic Identification of Drug-like Bioisosteric Groups. J. Chem. Inf. Comput. Sci. 2002, 43, 374-380. 13.Lewell, X. Q.; Jones, A. C.; Bruce, C. L.; Harper, G.; Jones, M. M.; McLay, I. M.; Bradshaw, J., Drug Rings Database with Web Interface. A Tool for Identifying Alternative Chemical Rings in Lead Discovery Programs. J. Med. Chem. 2003, 46, 3257-3274. 14.Weininger, D., SMILES, A Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31-36. 15.Lewell, X. Q.; Judd, D. B.; Watson, S. P.; Hann, M. M., RECAP – Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry. J. Chem. Inf. Comput. Sci. 1998, 38, 511-522. 16.Fechner, U.; Schneider, G., Flux (2): Comparison of Molecular Mutation and Crossover Operators for Ligand-Based de Novo Design. J. Chem. Inf. Model. 2007, 47, 656-667. 17.Grant, M. A., Protein Structure Prediction in Structure-Based Ligand Design and Virtual Screening. Comb. Chem. High T. Scr. 2009, 12, 940-960. 18.Bergmann, R.; Linusson, A.; Zamora, I., SHOP: Scaffold HOPping by GRID-Based Similarity Searches. J. Med. Chem. 2007, 50, 2708-2717. 19.Goodford, P. J., A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules. J. Med. Chem. 1985, 28, 849-857. 20.Dey, F.; Caflisch, A., Fragment-Based de Novo Ligand Design by Multiobjective Evolutionary Optimization. J. Chem. Inf. Model., 2008, 48, 679-690. 21.Ihlenfeldt, W.-D.; Gasteiger, J., Computer-Assisted Planning of Organic Syntheses: The Second Generation of Programs. Angew. Chem. Int. Ed. Engl. 1996, 34, 2613-2633. 22.Hendrickson, J. B.; Toczko, A. G., Synthesis design logic and the SYNGEN (synthesis generation) program. Pure Appl. Chem. 1988, 60, 1563-1572. 23.Socorro, I. M.; Goodman, J. M., The ROBIA Program for Predicting Organic Reactivity. J. Chem. Inf. Model. 2006, 46, 606-614. 24.Corey, E. J.; Howe, W. J.; Orf, H. W.; Pensak, D. A.; Petersson, G., General Methods of Synthetic Analysis. Strategic Bond Disconnections for Bridged Polycyclic Structures. J. Am. Chem. Soc. 1975, 97, 6116-6124. 25.Corey, E. J.; Jorgensen, W. L., Computer-Assisted Synthetic Analysis. Synthetic Strategies Based on Appendages and The Use of Reconnective Transforms. J. Am. Chem. Soc. 1976, 98, 189-203. 26.Barone, R.; Chanon, M., Search for strategies by computer: the CONAN approach. Application to steroid and taxane frameworks. Tetrahedron 2005, 61, 8916-8923. 27.Hendrickson, J. B.; Grier, D. L.; Toczko, A. G., A logic-based program for synthesis design. J. Am. Chem. Soc. 1985, 107, 5228-5238. 28.Law, J.; Zsoldos, Z.; Simon, A.; Reid, D.; Liu, Y.; Khew, S. Y.; Johnson, A. P.; Major, S.; Wade, R. A.; Ando, H. Y., Route Designer: A Retrosynthetic Analysis Tool Utilizing Automated Retrosynthetic Rule Generation. J. Chem. Inf. Model. 2009, 49, 593-602. 29.Lin, F.-Y.; Tseng, Y. J., LeadOp: Structure-based fragment hopping for lead optimization using pre-docked fragment database. J. Chem. Inf. Model. 2011 [Just Accepted], DOI: 10.1021/ci200136j. Published online: June, 1, 2011 30.Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M., DrugBank: a Knowledgebase for Drugs, Drug Actions and Drug Targets. Nucleic Acids Res. 2008, 36, D901-D906. 31.Orita, M.; Ohno, K.; Niimi, T., Two ''Golden Ratio'' indices in fragment-based drug discovery. Drug Discovery Today 2009, 14, 321-328. 32.Hopkins, A. L.; Groom, C. R.; Alex, A., Ligand Efficiency: A Useful Metric for Lead Selection. Drug Discov. Today 2004, 9, 430-431. 33.Alex, A. A.; Flocco, M. M., Fragment-Based Drug Discovery: What Has It Achieved so Fair? Curr. Top. Med. Chem. 2007, 7, 1544-1567. 34.Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A. J., Recent Developments in Fragment-Based Drug Discovery. J. Med. Chem. 2008, 51, 3661-3680. 35.Ciulli, A.; Williams, G.; Smith, A. G.; Blundell, T. L.; Abell, C., Probing Hot Spots at Protein-Ligand Binding Sites: A Fragment-Based Approach Using Biophysical Methods. J. Med. Chem. 2006, 49, 4992-5000. 36.Saxty, G.; Woodhead, S. J.; Berdini, V.; Davies, T. G.; Verdonk, M. L.; Wyatt, P. G.; Boyle, R. G.; Barford, D.; Downham, R.; Garrett, M. D.; Carr, R. A., Identification of Inhibitors of Protein Kinase B Using Fragment-Based Lead Discovery. J. Med. Chem. 2007, 50, 2293-2296. 37.Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3-25. 38.Smith, A. L.; DeMorin, F. F.; Paras, N. A.; Huang, Q.; Petkus, J. K.; Doherty, E. M.; Nixey, T.; Kim, J. L.; Whittington, D. A.; Epstein, L. F.; Lee, M. R.; Rose, M. J.; Babij, C.; Fernando, M.; Hess, K.; Le, Q.; Beltran, P.; Carnahan, J., Selective Inhibitors of the Mutant B-Raf Pathway: Discovery of a Potent and Orally Bioavailable Aminoisoquinoline. J. Med. Chem. 2009, 52, 6189-6192. 39.Ducharme, Y.; Blouin, M.; Brideau, C.; Chateauneuf, A.; Gareau, Y.; Grimm, E. L.; Juteau, H.; Laliberte, S.; MacKay, B.; Masse, F.; Ouellet, M.; Salem, M.; Styhler, A.; Friesen, R. W., The Discovery of Setileuton, a Potent and Selective 5-Lipoxygenase Inhibitor. ACS Med. Chem. Lett. 2010, 1, 170-174. 40.Hodous, B. L.; Geuns-Meyer, S. D.; Hughes, P. E.; Albrecht, B. K.; Bellon, S.; Bready, J.; Caenepeel, S.; Cee, V. J.; Chaffee, S. C.; Coxon, A.; Emery, M.; Fretland, J.; Gallant, P.; Gu, Y.; Hoffman, D.; Johnson, R. E.; Kendall, R.; Kim, J. L.; Long, A. M.; Morrison, M.; Olivieri, P. R.; Patel, V. F.; Polverino, A.; Rose, P.; Tempest, P.; Wang, L.; Whittington, D. A.; Zhao, H., Evolution of a Highly Selective and Potent 2-(Pyridin-2-yl)-1,3,5-triazine Tie-2 Kinase Inhibitor. J. Med. Chem. 2007, 50, 611-626. 41.Pipaon, C.; Gutierrez, P.; Montero, J. C.; Lorenzo, M.; Eguiraun, A.; De la Fuente, J. A.; Pandiella, A.; Leon, J.; Ortiz, J. M., Mitogen-Activated Protein Kinase Routes as Targets in the Action of Diaza-Anthracene Compounds with a Potent Growth-Inhibitory Effect on Cancer Cells. Mol. Cancer Ther. 2002, 1, 811-819. 42.Wellbrock, C.; Karasarides, M.; Marais, R., The RAF Proteins Take Centre Stage. Nat. Rev. Mol. Cell Bio. 2004, 5, 875-885. 43.Davies, H.; Bignell, G. R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M. J.; Bottomley, W.; Davis, N.; Dicks, N.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B. A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G. J.; Bigner, D. D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J. W. C.; Leung, S. Y.; Yuen, S. T.; Weber, B. L.; Siegler, H. F.; Darrow, T. L.; Paterson, H.; Marais, R.; Marshall, C. J.; Wooster, R.; Stratton, M. R.; Futreal, P. A., Mutations of the BRAF Gene in Human Cancer. Nature 2002, 417, 949-954. 44.Flaherty, K. T.; Puzanov, I.; Kim, K. B.; Ribas, A.; McArthur, G. A.; Sosman, J. A.; O''Dwyer, P. J.; Lee, R. J.; Grippo, J. F.; Nolop, K.; Chapman, P. B., Inhibition of Mutated, Activated BRAF in Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 809-819. 45.Garnett, M. J.; Marais, R., Guilty as Charged: B-RAF Is a Human Oncogene. Cancer Cell 2004, 6, 313-319. 46.Tsai, J.; Lee, J. T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N. K.; Sproesser, K.; Li, L.; Smalley, K. S. M.; Fong, D.; Zhu, Y. L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.; Suzuki, Y.; Luu, C.; Settachatgul, C.; Shellooe, R.; Cantwell, J.; Kim, S. H.; Schlessinger, J.; Zhang, K. Y. J.; West, B. L.; Powell, B.; Habets, G.; Zhang, C.; Ibrahim, P. N.; Hirth, P.; Artis, D. R.; Herlyn, M.; Bollag, G., Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase with Potent Antimelanoma Activity. Proc. Natl. Acad. Sci. USA 2008, 105, 3041-3046. 47.King, A. J.; Patrick, D. R.; Batorsky, R. S.; Ho, M. L.; Do, H. T.; Zhang, S. Y.; Kumar, R.; Rusnak, D. W.; Takle, A. K.; Wilson, D. M.; Hugger, E.; Wang, L. F.; Karreth, F.; Lougheed, J. C.; Lee, J.; Chau, D.; Stout, T. J.; May, E. W.; Rominger, C. M.; Schaber, M. D.; Luo, L. S.; Lakdawala, A. S.; Adams, J. L.; Contractor, R. G.; Smalley, K. S. M.; Herlyn, M.; Morrissey, M. M.; Tuveson, D. A.; Huang, P. S., Demonstration of a Genetic Therapeutic Index for Tumors Expressing Oncogenic BRAF by the Kinase Inhibitor SB-590885. Cancer Res. 2006, 66, 11100-11105. 48.Gerwick, W. H., Structure and Biosynthesis of Marine Algal Oxylipins. BBA-Lipid Lipid Met. 1994, 1211, 243-255. 49.Depetrocellis, L.; Dimarzo, V., Aquatic Invertebrates Open up New Perspectives in Eicosanoid Research: Biosynthesis and Bioactivity. Prostagl. Leuko. Ess. Fatty Acids 1994, 51, 215-229. 50.Yamamoto, S.; Kishimoto, K.; Arakawa, T.; Suzuki, H.; Nakamura, M.; Yoshimoto, T.; Takao, T.; Shimonishi, Y.; Tanabe, T., Arachidonate 12-Lipoxygenases - Catalytic Properties and Regulation of the Enzyme Gene. Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury 3 1997, 407, 191-196. 51.Samuelsson, B.; Dahlen, S. E.; Lindgren, J. A.; Rouzer, C. A.; Serhan, C. N., Leukotrienes and Lipoxins: Structures, Biosynthesis, and Biological Effects. Science 1987, 237, 1171-1176. 52.Dailey, L. A.; Imming, P., 12-Lipoxygenase: Classification, Possible Therapeutic Benefits from Inhibition, and Inhibitors. Curr. Med. Chem. 1999, 6, 389-398. 53.Steele, V. E.; Holmes, C. A.; Hawk, E. T.; Kopelovich, L.; Lubet, R. A.; Crowell, J. A.; Sigman, C. C.; Kelloff, G. J., Lipoxygenase Inhibitors as Potential Cancer Chemopreventives. Cancer Epidem. Biomar. 1999, 8, 467-483. 54.Ivanov, I.; Heydeck, D.; Hofheinz, K.; Roffeis, J.; O''Donnell, V. B.; Kuhn, H.; Walther, M., Molecular Enzymology of Lipoxygenases. Arch. Biochem. Biophys. 2010, 503, 161-174. 55.Woods, J. W.; Evans, J. F.; Ethier, D.; Scott, S.; Vickers, P. J.; Hearn, L.; Heibein, J. A.; Charleson, S.; Singer, II, 5-Lipoxygenase and 5-Lipoxygenase-Activating Protein are Localized in the Nuclear Envelope of Activated Human Leukocytes. Jpn. J. Exp. Med. 1993, 178, 1935-1946. 56.Shaffer, D. N.; Mansmann, P. T., Leukotriene Inhibition and Advances in the Treatment of Asthma: A Pharmacological Review. Pediatr. Asthma. Aller. 1997, 11, 171-179. 57.Yu, Q., The dynamic roles of angiopoietins in tumor angiogenesis. Future Oncology 2005, 1, 475-484. 58.Hasegawa, M.; Nishigaki, N.; Washio, Y.; Kano, K.; Harris, P. A.; Sato, H.; Mori, I.; West, R. I.; Shibahara, M.; Toyoda, H.; Wang, L.; Nolte, R. T.; Veal, J. M.; Cheung, M., Discovery of Novel Benzimidazoles as Potent Inhibitors of TIE-2 and VEGFR-2 Tyrosine Kinase Receptors. J. Med. Chem. 2007, 50, 4453-4470. 59.Oliner, J.; Min, H.; Leal, J.; Yu, D.; Rao, S.; You, E.; Tang, X.; Kim, H.; Meyer, S.; Han, S. J.; Hawkins, N.; Rosenfeld, R.; Davy, E.; Graham, K.; Jacobsen, F.; Stevenson, S.; Ho, J.; Chen, Q.; Hartmann, T.; Michaels, M.; Kelley, M.; Li, L.; Sitney, K.; Martin, F.; Sun, J.-R.; Zhang, N.; Lu, J.; Estrada, J.; Kumar, R.; Coxon, A.; Kaufman, S.; Pretorius, J.; Scully, S.; Cattley, R.; Payton, M.; Coats, S.; Nguyen, L.; Desilva, B.; Ndifor, A.; Hayward, I.; Radinsky, R.; Boone, T.; Kendall, R., Suppression of Angiogenesis and Tumor Growth by Selective Inhibition of Angiopoietin-2. Cancer Cell 2004, 6, 507-516. 60.Huang, H.; Bhat, A.; Woodnutt, G.; Lappe, R., Targeting the ANGPT–TIE2 pathway in malignancy. Nat. Rev. Cancer 2010, 10, 575-585. 61.Dibb, N. J.; Dilworth, S. M.; Mol, C. D., Opinion - Switching on Kinases: Oncogenic Activation of BRAF and the PDGFR Family. Nat. Rev. Cancer 2004, 4, 718-727. 62.Charlier, C.; Henichart, J.-P.; Durant, F.; Wouters, J., Structural Insights into Human 5-Lipoxygenase Inhibition: Combined Ligand-Based and Target-Based Approach. J. Med. Chem. 2005, 49, 186-195. 63.Glover, F., Future Paths for Integer Programming and Links to Artificial Intelligence. Comput. Oper. Res. 1986, 13, 533-549. 64.Kolb, P.; Caflisch, A., Automatic and Efficient Decomposition of Two-Dimensional Structures of Small Molecules for Fragment-Based High-Throughput Docking. J. Med. Chem. 2006, 49, 7384-7392. 65.Dube, D.; Blouin, M.; Brideau, C.; Chan, C. C.; Desmarais, S.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Girard, M.; Girard, Y.; Guay, J.; Riendeau, D.; Tagari, P.; Young, R. N., Quinolines as Potent 5-Lipoxygenase Inhibitors: Synthesis and Biological Profile of L-746,530. Bioorg. Med. Chem. Lett. 1998, 8, 1255-1260. 66.Mano, T.; Okumura, Y.; Sakakibara, M.; Okumura, T.; Tamura, T.; Miyamoto, K.; Stevens, R. W., 4-[5-Fluoro-3-[4-(2-methyl-1H-imidazol-1-yl) benzyloxy]phenyl] -3,4,5,6- tetrahydro-2H-pyran-4-carboxamide, an Orally Active Inhibitor of 5-Lipoxygenase with Improved Pharmacokinetic and Toxicology Characteristics. J. Med. Chem. 2003, 47, 720-725. 67.Ducharme, Y.; Brideau, C.; Dube, D.; Chan, C. C.; Falgueyret, J. P.; Gillard, J. W.; Guay, J.; Hutchinson, J. H.; McFarlane, C. S., Naphthalenic Lignan Lactones as Selective, Nonredox 5-Lipoxygenase Inhibitors. Synthesis and Biological Activity of (Methoxyalkyl)thiazole and Methoxytetrahydropyran Hybrids. J. Med. Chem. 1994, 37, 512-518. 68.Laufer, S. A.; Augustin, J.; Dannhardt, G.; Kiefer, W., (6,7 -Diaryldihydropyrrolizin-5-yl)acetic Acids, a Novel Class of Potent Dual Inhibitors of Both Cyclooxygenase and 5-Lipoxygenase. J. Med. Chem. 1994, 37, 1894-1897. 69.Hutchinson, J. H.; Charleson, S.; Evans, J. F.; Falgueyret, J.-P.; Hoogsteen, K.; Jones, T. R.; Kargman, S.; Macdonald, D.; McFarlane, C. S., Thiopyrano l[2,3,4-c,d]indoles as Inhibitors of 5-Lipoxygenase, 5-Lipoxygenase-Activating Protein, and Leukotriene C4 Synthase. J. Med. Chem. 1995, 38, 4538-4547. 70.Hutchinson, J. H.; Riendeau, D.; Brideau, C.; Chan, C.; Delorme, D.; Denis, D.; Falgueyret, J. P.; Fortin, R.; Guay, J., Substituted Thiopyrano[2,3,4-c,d]indoles as Potent, Selective, and Orally Active Inhibitors of 5-Lipoxygenase. Synthesis and Biological Evaluation of L-691,816. J. Med. Chem. 1993, 36, 2771-2787. 71.Pommery, N.; Taverne, T.; Telliez, A.; Goossens, L.; Charlier, C.; Pommery, J.; Goossens, J.-F.; Houssin, R.; Durant, F.; Henichart, J.-P., New COX-2/5-LOX Inhibitors: Apoptosis-Inducing Agents Potentially Useful in Prostate Cancer Chemotherapy. J. Med. Chem. 2004, 47, 6195-6206. 72.Barbey, S.; Goossens, L.; Taverne, T.; Cornet, J.; Choesmel, V.; Rouaud, C.; Gimeno, G.; Yannic-Arnoult, S.; Michaux, C.; Charlier, C.; Houssin, R.; Henichart, J. P., Synthesis and Activity of a New Methoxytetrahydropyran Derivative as Dual Cyclooxygenase-2/5-Lipoxygenase Inhibitor. Bioorg. Med. Chem. Lett. 2002, 12, 779-782. 73.Majeux, N.; Scarsi, M.; Apostolakis, J.; Ehrhardt, C.; Caflisch, A., Exhaustive Docking of Molecular Fragments with Electrostatic Solvation. Proteins: Struct. Funct. Genet. 1999, 37, 88-105. 74.HyperChem, Version 7.0; Hypercube, Inc.: Gainesville, 2007. 75.Trott, O.; Olson, A. J., Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455-461. 76.Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435-447. 77.Oostenbrink, C.; Soares, T. A.; van der Vegt, N. F. A.; van Gunsteren, W. F., Validation of the 53A6 GROMOS Force Field. Eur. Biophys. J. 2005, 34, 273-284. 78.Berendsen, H. P., JPM; van Gunsteren, WF; Hermans, J., Interaction Models for Water in Relation to Protein Hydration. In Intermolecular Forces; Pullman, B., Ed.; D. Reidel: Dordrecht, The Netherlands. 1981, 331-342. 79.Hammarberg, T.; Zhang, Y. Y.; Lind, B.; Radmark, O.; Samuelsson, B., Mutations at the C-Terminal Isoleucine and Other Potential Iron Ligands of 5-Lipoxygenase. Eur. J. Biochem. 1995, 230, 401-407. 80.Schwarz, K.; Walther, M.; Anton, M.; Gerth, C.; Feussner, I.; Kuhn, H., Structural Basis for Lipoxygenase Specificity. J. Biol. Chem. 2001, 276, 773-779. 81.Charlier, C.; Henichart, J.-P.; Durant, F.; Wouters, J., Structural Insights into Human 5-Lipoxygenase Inhibition: Combined Ligand-Based and Target-Based Approach. J. Med. Chem. 2005, 49, 186-195. 82.https://www.reaxys.com/ 83.Sigma-Alderich Chemie GmbH, Steinheim, GE. 84.JChem 5.4.1.1; ChemAxon Ltd: Budapest, Hungary. 85.Imre, G., Kalszi, A., Jkli, I., and Farkas, .Advanced Automatic Generation of 3D Molecular Structures, presented at the 1st European Chemistry Congress, Budapest, Hungary, 2006. 86.Marvin 5.4.0.1; ChemAxon Ltd: Budapest, Hungary. 87.Bridges, A. J., Chemical inhibitors of protein kinases. Chem. Rev. 2001, 101, 2541-2571.
|