跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳煜堯
研究生(外文):Yu-Yao Wu
論文名稱:硫醇苯胺共聚物/奈米金複合膜材暨奈米碳管/奈米金複合物之製備與性質研究
論文名稱(外文):Preparation and Properties of Nano-Gold Attached Mercaptoaniline Complex Membrane and Carbon Nanotubes/Nano-Gold Particles Composites
指導教授:葉瑞銘葉瑞銘引用關係
指導教授(外文):Jui-Ming Yeh
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:103
中文關鍵詞:水熱法共聚物苯胺奈米金
外文關鍵詞:copolymernanogoldhydrothermalaniline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
在本論文中,將以硫醇苯胺共聚物(ANI+MANI)/奈米金複合膜材及奈米碳管/奈米金複合物進行研究與性質探討,並利用各種儀器作基本鑑定及性質上之量測分析。
於第三章中,利用苯胺及硫醇苯胺兩種單體進行氧化聚合來合成共聚物,並將之製備成為薄膜,再將薄膜整片浸泡到預先以水熱法合成之水相奈米金當中,由於薄膜表面含有硫醇(-SH)之官能基,又加上硫本身對金粒子具有良好之選擇性,因此易形成配位共價鍵(ligand to metal, -S-Au) 1。經由AFM證實硫醇苯胺共聚物(ANI+MANI)/奈米金複合膜材其表面平滑度有提高的趨勢,又藉由接觸角量測證實了硫醇苯胺共聚物(ANI+MANI)/奈米金複合膜材是很好的疏水性材料。
於第四章中,成功地利用了硫醇苯胺(2-Mercaptoaniline)將奈米碳管表面做一個化學修飾,再與奈米金反應,此一方法是利用硫醇苯胺(2-Mercaptoaniline)這個分子當作一個架橋基,將奈米碳管與奈米金之間做一個聯繫,所得到的複合物將透過穿透式電子顯微鏡FTIR-ATR、UV-visible、Raman spectroscopy以及X-ray繞射儀做一個鑑定。
Abstract
In this Master dissertation, we have preparation and properties of nano-gold attached mercaptoaniline complex membrane and carbon nanotubes/nano gold particles composites, respectively. They were studied on the optical clarity and other properties discussion.
For chapter 3, Poly (ANI-co-MANI)/Au composite film was prepared by a facial process with well-dispersed on its surface. The hydrosulfide group (-SH) contained by the Poly (ANI-co-MANI) was play an important role as a bridge base on the -S-Au bonding. This bond is well-known to react and form easily so that a original procedure has been developed. This advantageous consequence would be helpful for practical manipulation, in particle for the biosensor and bio-catalysis devices.
For chapter 4, we present the novel assemblies by anchoring gold nanoparticles of ~ 10 nm diameter to sidewalls and ends of carbon nanotubes (CNTs) via covalent interaction between gold nanoparticles and thiol-terminated CNT surfaces. Mercaptoaniline was first grafted onto the surface of nanotubes by covalent interaction between primary amine groups of mercaptoaniline and carbon nanotube surface to give thiol-terminated CNTs. Subsequently, gold nanoparticles were anchored to the surface of nanotubes through covalent interaction between thiol-terminated nanotubes and gold nanoparticles. This new assemblies of carbon nanotubes (CNT) and gold nanoparticles were obtained with mercaptoaniline as molecular bridge. These assemblies were confirmed further by transmission electron microscopy, FTIR-ATR, UV-visible, Raman spectroscopy and X-ray powder diffraction.
總目錄
中文摘要………………………………………………………………. ..I
英文摘要………………………………………………………………...II
目錄…………………………………………….……...………………..IV
圖索引……………………………………………………………….....VII
表索引…………………………………………………………………..IX


第一章 緒論
1.1前言………………………………………………………………….1
1.2導電高分子簡介…………………………………………………….3
1.2.1 歷史回顧.....................................................................................3
1.2.2 基本能帶理論與摻雜理論……………………………………6
1.2.3 導電高分子的類型....................................................................13
1.3 奈米碳管簡介……………………………………………………16
1.3.1 發展歷史………………………………………………………16
1.3.2 奈米碳管之特性……………………………………………19
1.3.3 奈米碳管之化學修飾…………………………………………23
1.4 奈米金簡介………………………………………………………26
1.4.1 奈米粒子介紹…………………………………………………26
1.4.2 金奈米粒子之常見製備方法…………………………………30
1.4.3 產業應用………………………………………………………37
1.5 研究動機…………………………………………………………44
1.5.1 硫醇苯胺共聚物/奈米金複合膜材之研究動機……………44
1.5.2奈米碳管/奈米金複合物之研究動機…………………………44

第二章 實驗
2.1 實驗藥品…………………………………………………………46
2.2 實驗儀器…………………………………………………………47
2.3 實驗方法…………………………………………………………49
2.3.1製備水相奈米金………………………………………………49
2.3.2製備苯胺及硫醇苯胺共聚物…………………………………50
2.3.3 製備苯胺及硫醇苯胺共聚物之薄膜…………………………51
2.3.4 製備苯胺及硫醇苯胺共聚物/奈米金複合膜材……………51
2.3.5 製備官能化多層奈米碳管複合物……………………………53
2.3.6 製備奈米碳管/奈米金複合物………………………………54

第三章 硫醇苯胺共聚物(ANI+MANI)/奈米金複合膜材之研究
3.1結果與討論………………………………………………………55
3.1.1 基本鑑定………………………………………………………56
3.1.2 型態學鑑定……………………………………………………63
3.1.3 表面性質………………………………………………………65
3.1.4 熱性質分析……………………………………………………68
3.2 結論.………………………………………………………………73

第四章 奈米碳管/奈米金複合物之研究
4.1結果與討論…………………………………………………………74
4.1.1 基本鑑定………………………………………………………75
4.1.2 型態學鑑定……………………………………………………83
4.2 結論………………………………………………………………85

第五章 總結與展望………………………………………………86

第六章 參考文獻…………………………………………………88

第七章 附錄………………………………………………………93
著作…………………………………………………………93
作者簡介…………………………………………………94




圖索引

圖1-1 不同材料的導電度及材料屬性分界…………………………8
圖1-2 由軌域能階成長進階至能帶圖…………………………………9
圖1-3 金屬、半導體和絕緣體三種導電度物質的能隙與能帶圖……9
圖1-4 本質型半導體的能帶模型……………………………………11
圖1-5 二種摻雜型式之非本質型半導體……………………………11
圖1-6 polaron 和bipolaron 之能帶示意圖…………………………13
圖1-7碳的各種同素異形體……………………………………………16
圖1-8 ( a ) 單層 ( b ) 多層奈米碳管結構示意圖……………………18
圖1-9 PPEI-EI 官能基化碳管震盪時間對平均碳管長度作圖……24
圖1-10 苯胺與奈米碳管間之反應機制………………………………25
圖1-11 Nd : YAG laser ablation之製備圖……………………………31
圖1-12 逆微胞還原法…………………………………………………35
圖1-13本論文實驗步驟與他者文獻實驗步驟比較…………………45
圖2-1 奈米金合成反應裝置圖………………………………………49
圖2-2 共聚物反應流程圖……………………………………………50
圖2-3 硫醇苯胺共聚物/奈米金複合膜材製備流程圖………………52
圖2-4 膜材上硫醇基與奈米金反應前後之情形……………………52
圖2-5 多層奈米碳管與官能化含硫醇基之奈米碳管於酒精溶劑中之
分散情形………………………………………………………53
圖2-6 製備奈米碳管/奈米金複合物之步驟圖…………54
圖3-1 硫醇苯胺共聚物/奈米金複合材料之FTIR圖………………57
圖3-2 硫醇苯胺共聚物/奈米金複合材料紫外光光譜圖……………59
圖3-3 粒徑大小之分布圖 (a)AuNP (b) Co12 (c)Co12Au …………61
圖3-4 XRD繞射圖譜 (a)PANI (b)Co12 (c)Co12Au..………………62
圖3-5 FE-SEM之影像圖 (a)Co12 (b)Co12Au……………………63
圖3-6 Lv-SEM元素定性影像圖………………………………………64
圖3-7 AFM 3D圖像 (a)Co12 (b)Co12Au…………………………65
圖3-8接觸角量測示意圖….…………………………………………66
圖3-9 PANI、Co12及Co12Au三種膜材之接觸角數值………………67
圖3-10 PANI、Co12及Co12Au三種膜材之TGA圖譜……………70
圖3-11 PANI、Co12及Co12Au三種膜材之DSC圖譜……………72
圖4-1 CNT、rCNT及rCNTAu之ATR-FTIR光譜圖………………76
圖4-2 紫外光光譜圖 (a)2-mercaptoaniline (b)rCNT (c)AuNP
(d)rCNTAu………………………………………………………78
圖4-3 拉曼光譜圖 (a)多層奈米碳管 (b)官能化碳管 (c)奈米碳管/奈
米金複合物……………………………………………………80
圖4-4 多層奈米碳管、奈米金、官能化碳管與奈米碳管/奈米金複合
物系列之XRD 圖譜…………………………………………82
圖4-5 TEM映像圖 (a)AuNP (b)rCNT (c) and (d) are rCNTAu……84

表索引

表1-1 常見的導電高分子………………………………………………5
表1-2 奈米微粒的用途………………………………………………27
表3-1 實驗樣品及其代號……………………………………………55
表3-2 粒徑大小分佈之平均值………………………………………61
表3-3 PANI、Co12、Co12Au三種樣品之TGA數據………………69
表4-1 實驗樣品及其代號……………………………………………74
表4-2 多層奈米碳管、羧化碳管與醯化碳管之I G band / I D band 值…80
參考文獻
1. R. G. Pearson, J. Chem. Educ., 1968. 45. 581.
2. D. Chapman, R. J. Warm, A. G. Fitzgerald, A. D. Yoffe J. Chem. Soc.,
Faraday Trans. 1964, 294,60.
3. H. Shirakawa, S. Ikeda. Polymer. 1971, 2, 231.
4. (a) H. Shirakawa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J.
Heeger J. Chem. Commum. 1977, 578.
(b) C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Lousi,
H. Shirakawa, S. C. Gau, A. G. MacDiarmid, Phys. Rev Lett. 1977, 39,
1098.
5. A. J. Epstein, and A. G. MacDiarmid, “Polyaniline: Solutions, Film,
and Oxidation State,” Proc. Faraday Society, Faraday Trans, 1989.
6. A. F. Diaz., J. Bargon in Handbook of Conducting Polymers, T. A.
Skotherim Ed. ; Marcel Deckker: New York, 1986, Vol. 1, 82.
7. H. Nakanishi and H. Matsuda (Research Institute of polymers and
textiles), “conductive polymers”, Reported in a Journal issued by
Business & Technology. 1987. R.
8. Ramakrishnan Harihanan, Ph.D. Dissertation, Chemistry Department,
Drexel University, 1994.
9. Jui-Ming Yeh, Shir-Joe Liou, C.-Y. Lai, P.-C. Wu, Tsung-Yen Tasi. Chemistry of Materials. 2001, Vol.13. No. 3. p.1131-1136.
10. C. Kittel, Introduction to Solid State Physics, 6th ed. John Wiley &
Sons, Singapore, 1986.
11. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley,
Nature, 1985, 318, 162.
12. A. Oberlin, M. Endo, T. Koyama, Carbon, 1976, 14, 133.
13. S. Iijima, Nature, 1991, 354, 56.
14. T. W. Ebbesen, P. M. Ajayan, Nature, 1992, 358,220.
15. S. Iijima, T. Ichihashi, Nature, 1993, 363,603.
16. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J.
Vazquez, Nature, 1993, 363,605.
17. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature, 1996, 381, 678.
18. E. W. Wong, P. E. Sheehan, C. M. Lieber, Science, 1997, 277, 1971.
19. M. F. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, Science, 2000, 287, 637.
20. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys., 1996, 104,
2089.
21. M. Terrones, W. K. Hsu, H. W. Kroto, D. R. M. Walton, Topics in
Current Chemistry, 1998, 199, 1.
22. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B, 1999, 59,
2514.
23. M. A. Osman, D. Srivastava, Nanotechnology, 2001, 12, 21.
24. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett., 1992, 68, 1579.
25. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Rev. Lett., 1992, 60, 2204.
26. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C.
Dekker, Nature, 1998, 391, 59.
27. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Nature, 1996, 382, 54.
28. J. E. Fischer, Acc. Chem. Res., 2002, 35, 1079.
29. S. C. Tsang, Y. K. Chen, M. L. H. Green, Nature, 1994, 372, 159.
30. R. M. Lago, S. C. Tsang, M. L. H. Green, J. Chem. Soc., Chem.
Commu., 1995, 1355.
31. H. Hiura, T. W. Ebbesen, K. Tanigaki, Adv. Mater., 1995, 7, 275.
32. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J.
Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science, 1998, 280, 1253.
33. A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B.
Huffman, J. Liu, R. E. Smalley, H. H. Hwu, J. G. Chen, J. Am. Chem.
Soc., 2001, 123, 10699.
34. A. Kuznetsova, D. B. Mawhinney, V. Naumenko, J. T. Yates, J. Liu, R. E. Smalley, Chem. Phys. Lett., 2000, 321, 292.
35. W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao, Y. P. Sun, Nano
Lett., 2002, 2, 231.
36. Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley, J. L. Margrave, Nano
Lett., 2002, 2, 1009.
37. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Science, 1998, 282, 95.
38. M. A. Hamon, J. Chen, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Adv. Mater., 1999, 11, 834.
39. U. D. Weglikowska, J. M. Benoit, P. W. Chiu, R. Graupner, S. Lebedkin, S. Roth, Current Applied physics, 2002, 2, 497.
40. V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, A. Hirsch, J. Am. Chem. Soc., 2002, 124, 760.
41. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge, J. L. Margrave, J. Phys. Chem. B, 1999, 103, 4318.
42. S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E.
Itkis, R. C. Haddon, Acc. Chem. Res., 2002, 35, 1105.
43. Y. Sun, S. R. Wilson, D. I. Schuster, J. Am. Chem. Soc., 2001, 123,
5348.
44. 都有為,「超微顆粒的應用」,化工進展第四期,1993
45. K. Okitsu, H. Bandow, Y. Maeda, Chem. Mater. 1996, 8, 315.
46. K. Okitsu, H. Bandow, Y. Maed, Journal of Physical Chemistry B. 1997, 101, 5470.
47. W. Chen, P.-W. Cai, C.-H. Liang, L.-D. Zhang, Mater. Res. Bull. 2001, 36, 335.
48. W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, J. Colloid Surf. Sci. 2001, 238, 291.
49. V. G. Pol, A. Gedanken, J. Calderro Moreno, Chem. Mater. 2003, 15, 1111.
50. F. Mafune, J. Kohno, Y. Takeda, T. Knodow, H. Sawabe, Journal of Physical Chemistry B. 2000, 104, 9111.
51. J. S. Bradly, The Chemistry of Transition Metal Colloids. In Clusters and Colloids, Schmid. G, Ed.; VCH Publishers: New York, USA. 1994, 459-530.
52. Dictionnaire de Chymie, Lacombe: Paris, 1769.
53. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. J. Whyman, J. Chem. Soc., Chem. Commun. 1994. 801.
54. J. Turkevitch, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc., 1951, 1, 55-75.
55. G. Frens, Nature: Phys. Sci. 1973, 241, 20.
56. T. Yonezawa, T. Kunitake, Colloids Surf. A: Physicochem. Eng. Asp. 1999, 149, 193.
57. K. J. Watson, J. Zhu, S. B. T. Nguyen, C. A. Mirkin, J. Am. Chem. Soc. 1999, 121, 462.
58. I. Capek, Advances in Colloid and Interface Science. 2004, 110, 49.
59. Marie Christine Daniel and Didier Astruc. Chem. Rev. 2004, 104, 293.
60. T. K. Sau, A. Pal, N. R. Jana, Z. L. Wang, T. Pal, J. Nanopart. Res. 2001, 3, 257.
61. S. Meltzer, R. Resch, B. E. Koel, M. E. Thompson, A. Madhukar, A. A. G. Requicha, P. Will, Langmuir. 2001, 17, 1713.
62. K. Okitsu, H. Bandow, Y. Maeda, Chemistry of Materials. 1996, 8, 315.
63. 葉瑞銘/劉時州,「奈米金粒子之製備與應用」,化工資訊與商情,2005,二十一期,p48~55.
64. James. J. Storhoff, Robert. Elghanian, C. Robert,; Chad. A. Mirkin, J. Am. Chem. Soc. 1998, 120, 1959.
65. F. Eckstein, Ed. Oligonucleotide, and Analogues; 1st ed., Oxford University Press. New York, 1991.
66. PAN Bifeng, CUI Daxiang, GAO Feng, HE Rong; Nanoscience. 2006, 11, 95-101.
67. H. HU, Y. NI, S. K. Mandal, et al. Polyethyleneimine Functionalized Single-Walled Carbon Nanotubes as a Substrate for Neuronal Growth [J]. J. Phys. Chem. B, 2005, 109, 4285-4289.
68. T. Ohsaka, Y. Ohnuki, N. Oyama, G. Kaatagiri, K. Kamisako. J.
Electroanal Chem. 1984. 161. 399.
69. MU Shaolin, Kan. Jinqing, Synth. Met. 1998. 98.51.
70. L. Wang, X. Jing, F. Wang. Synth Met. 1991. 41-43. 685.
71. DL Pavia, GM Lampman, GS Kriz, Introduction to spectroscopy, Infrared spectroscopy. 1996, p80
72. Yanhou Geng, Li. Ji, Xiabin, Synth. Met. 1997. 84. 97.
73. M. Robert, Silverstein, Spectrometic Identification of Organic
Compound. 3th. p291.
74. C. A. Mirkin, Inorg, Chem. 2000, 39, 2258
75. J. L. Dwwald, W. T. Wondmagegn, A. V. Ellis, S. A. Curran, Synthetic Metals. 155(2005)39
76. Y. B. Moon, Y. Cao, P. Smith, A. J. Heeger, Polym. Commun. 1989, 30, 196.
77. G. K. Williamson, W. Hall, Acta Metall. 1953, 1, 22.
78. Douglas B. Mawhinney, Viktor Naumenko, Anya Kuznetsova, and John T. Yates, Jr.* J. Am. Chem. Soc. 2000, 122, 2383-2384
79. Y . Geng, J. Li, X. Jing, F. Wang, Interaction of N-methylpyrrolidone with doped polyaniline, Synth. Mat. 1997; 84: 97-8.
80. DL Pavia, GM Lampman, GS. Kriz, Introduction to spectroscopy, Ultraviolet spectroscopy, Harcourt., 2001, p362
81. 謝春義,「奈米碳管官能基化與聚苯胺摻合膜之研究」,91年6月,
國立雲林科技大學工業化學與災害防治所碩士論文
82. 林彥文,「聚苯胺/奈米碳管導電複合材料之製備與電性研究」,92
年6月,國立中興大學材料工程學研究所碩士論文
83. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito
Raman spectroscopy on isolated single wall carbon nanotubes.
Carbon 2002; 40(12): 2043-61.
84. M.T. Martínez, M.A. Callejas, A.M. Benito, M. Cochet, T. Seeger,
A. Ansón et. al., Sensitivity of single wall carbon nanotubes to
oxidative processing: structural modification, intercalation and
functionalisation. Carbon 2003; 41(12):2247-56.
85. X. Feng, C. Mao, G. Yang, W. Hou, J.J. Zhu, Polyaniline/Au Composite Hollow Spheres: Synthesis, Characterization, and Application to the Detection of Dopamine. Langmuir 2006; 22: 4384-9.
86. Z. Zhang, J. Zhang, P. Chen, B. Zhang, J. He, G. H. Hu, Enhanced interactions between multi-walled carbon nanotubes and polystyrene induced by melt mixing. Carbon 2006; 44(4): 692-8
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top