|
[1]World Health Organization, "Universal eye health - A global action plan," pp. 1–5, Mar. 2013. [2]中華民國衛生福利部國民健康署, "建議 3C 產品加註警語行政指導原則,". [Online].Available: http://www.hpa.gov.tw/BHPNet/Web/News/News.aspx?No=201501070001. Accessed: Jun. 24, 2016. [3]Z. Ma, "Practical approach for dispersion compensation in spectral-domain optical coherence tomography," Optical Engineering, vol. 51, no. 6, p. 063203, Jun. 2012. [4]E. A. Swanson et al., "In vivo retinal imaging by optical coherence tomography," Optics Letters, vol. 18, no. 21, p. 1864, Nov. 1993. [5]W. DREXLER and J. FUJIMOTO, "State-of-the-art retinal optical coherence tomography," Progress in Retinal and Eye Research, vol. 27, no. 1, pp. 45–88, Jan. 2008. [6]T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, "In vivo Fourier-domain full-field OCT of the human retina with 15 million a-lines/s," Optics Letters, vol. 35, no. 20, p. 3432, Oct. 2010. [7]鄭乃嘉, “結合光學同調斷層掃描與共焦螢光顯微術之研究.” 國立台灣大學光電工程研究所, 2010. [8]M. V. Klein and T. E. Furtak, Optics: Wiley New York, 1990. [9]陳上慈, “Ti:Al2O3 Crystal-Fiber-Based Parallel Optical Coherence Tomography.” 國立台灣大學光電工程研究所, 2014. [10]P. Xiao, M. Fink, and A. C. Boccara, “Transmission glass-like aberrations correction for full-field OCT imaging,” Imaging and Applied Optics, pp. 3–4, Jun. 2015. [11]吳東憶, “高解析且高深度 Mirau 全域式同調斷層掃描之活體皮膚量測.” 國立台灣大學光電工程研究所, 2015. [12]C.-C. Tsai et al., “Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,” Biomedical Optics Express, vol. 5, no. 9, p. 3001, Aug. 2014. [13]“The Rayleigh criterion,”. [Online]. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/raylei.html. Accessed: Jun. 2, 2016. [14]A. Yariv and P. Yeh, Photonics: Optical electronics in modern communications, 6th ed. New York: Oxford University Press, 2006. [15]W. Drexler, Optical coherence tomography: Technology and applications. Springer-Verlag New York, 2008. [16]“Optical resolution,” in Wikipedia, Wikimedia Foundation, 2016. [Online]. Available: https://en.wikipedia.org/wiki/Optical_resolution#Sensor_resolution_.28spatial.29. Accessed: Jun. 16, 2016. [17]P. Media, “Camera resolution: Combining detector and optics performance,” Photonics.com, 2009. [Online]. Available: http://www.photonics.com/EDU/Handbook.aspx?AID=29926. Accessed: Jun. 16, 2016. [18]G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” Journal of Luminescence, vol. 102-103, pp. 417–425, May 2003. [19]C. A. Burrus and J. Stone, “Single−crystal fiber optical devices: A Nd: YAG fiber laser,” Applied Physics Letters, vol. 26, no. 6, p. 318, 1975. [20]E. P. Widmaier, H. Raff, and K. T. Strang, Vander’s human physiology: The mechanisms of body function, 13th ed. New York: McGraw Hill Higher Education, 2014. [21]P. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Journal of the Optical Society of America B, vol. 3, pp. 125–133, 1986. [22]P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” Journal of the Optical Society of America B, vol. 3, pp. 134–139, 1986. [23]“The rat’s eyes,” 2003. [Online]. Available: http://www.ratbehavior.org/Eyes.htm. Accessed: May 25, 2016. [24]R. H. Douglas and G. Jeffery, “The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals,” Proceedings of the Royal Society B: Biological Sciences, vol. 281, no. 1780, pp. 20132995–20132995, Feb. 2014. [25]A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Research, vol. 23, no. 12, pp. 1351–1363, Jan. 1983. [26]D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” Journal of the Optical Society of America A, vol. 22, no. 1, p. 29, Jan. 2005. [27]王政凱, “摻鈦藍寶石寬頻晶體光纖光源之製備與檢測.” 國立台灣大學光電工程研究所, 2011. [28]Zeiss Objective EC Plan-Neofluar 40x/0.75 transmittance. Available: https://www.micro-shop.zeiss.com/?s=191483241fb3b94&l=en&p=us&f=o&a=v&m=s&id=440350-9903-000&o=. [29]Y. Geng, et al., “In vivo imaging of microscopic structures in the rat retina,” Investigative Opthalmology & Visual Science, vol. 50, no. 12, p. 5872, Dec. 2009. [30]R. Paschotta, “Encyclopedia of laser physics and technology - chromatic dispersion, group velocity, group delay, GDD, anomalous, normal, higher order,” RP Photonics Consulting GmbH, 2016. [31]A. K. Ghatak and K. Thyagarajan, An introduction to fiber optics. United Kingdom: Cambridge University Press, 1998. [32]G. D. Reid and K. Wynne, “Ultrafast laser technology and spectroscopy,” Applications, Theory and Instrumentation, Oct. 2000. [33]A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Applied Optics, vol. 37, no. 24, p. 5679, Aug. 1998. [34]E. G. Neumann, Single mode fibers: Fundamentals. Springer, 1988. [35]T. R. Hillman and D. D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Optics Express, vol. 13, no. 6, p. 1860, 2005. [36]T. Liu and J. P. Sullivan, Pressure and temperature sensitive paints. Germany: Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2004, p. 71. [37]W. J. Choi, “Measurement of retinal vascular permeability in a rat model using spectroscopic optical coherence tomography,” Thesis, Massachusetts Institute of Technology, 2011. [38]廖柏睿, “摻鉻釔鋁石榴石光源應用於光學低同調掃描中解析度與訊雜比之研究.” 國立台灣大學光電工程研究所, 2008. [39]M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal imaging and image analysis,” IEEE Reviews in Biomedical Engineering, vol. 3, pp. 169–208, 2010. [40]K. Probst, P. J. DeLint, and A. Rothova, “Photoreceptor function in eyes with Macular edema,” Investigative Ophthalmology & Visual Science, vol. 41, no. 12, pp. 4048–4053, Nov. 2000. [41]M. Hill 2016, “Vision - retina development,” 2016. [Online]. Available: https://embryology.med.unsw.edu.au/embryology/index.php/Vision_-_Retina_Development. Accessed: Jul. 16, 2016. [42]M. Ruggeri et al., “In vivo Three-Dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Investigative Opthalmology & Visual Science, vol. 48, no. 4, p. 1808, Apr. 2007. [43]J. J. Steinle and P. G. Smith, “Role of adrenergic receptors in vascular remodelling of the rat choroid,” British Journal of Pharmacology, vol. 136, no. 5, pp. 730–734, Jul. 2002. [44]F. Toyoda, Y. Tanaka, M. Shimmura, N. Kinoshita, H. Takano, and A. Kakehashi, “Diabetic retinal and Choroidal edema in SDT rats,” Journal of Diabetes Research, vol. 2016, pp. 1–6, 2016. [45]J. Chhablani, I. Y. Wong, and I. Kozak, “Choroidal imaging: A review,” Saudi Journal of Ophthalmology, vol. 28, no. 2, pp. 123–128, Apr. 2014. [46]V. J. Srinivasan et al., “Noninvasive volumetric imaging and Morphometry of the rodent retina with high-speed, Ultrahigh-Resolution optical coherence tomography,” Investigative Opthalmology & Visual Science, vol. 47, no. 12, p. 5522, Dec. 2006. [47]M. R. Hee, “Optical coherence tomography of the human retina,” Archives of Ophthalmology, vol. 113, no. 3, p. 325, Mar. 1995. [48]P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optometry and Vision Science, vol. 87, no. 12, pp. 930–941, Dec. 2010. [49]R. F. Spaide and C. A. Curcio, “Anatomical correlates to the bands seen in the outer retina by optical coherence tomography,” Retina, vol. 31, no. 8, pp. 1609–1619, Sep. 2011. [50]K. L. Fitch and M. J. Nadakavukaren, “Age-related changes in the corneal endothelium of the mouse,” Experimental Gerontology, vol. 21, no. 1, pp. 31–35, Jan. 1986. [51]J. D. Zieske, “Corneal development associated with eyelid opening,” The International Journal of Developmental Biology, vol. 48, no. 8-9, pp. 903–911, 2004. [52]D. W. DelMonte and T. Kim, “Anatomy and physiology of the cornea,” Journal of Cataract & Refractive Surgery, vol. 37, no. 3, pp. 588–598, Mar. 2011. [53]H. S. Dua, A. Miri, T. Alomar, A. M. Yeung, and D. G. Said, “The role of Limbal stem cells in corneal Epithelial maintenance,” Ophthalmology, vol. 116, no. 5, pp. 856–863, May 2009. [54]R. A. Laing, M. M. Sandstrom, A. R. Berrospi, and H. M. Leibowitz, “Changes in the corneal endothelium as a function of age,” Experimental Eye Research, vol. 22, no. 6, pp. 587–594, Jun. 1976. [55]T. M. S. Greiling and J. I. Clark, “The transparent lens and cornea in the mouse and zebra fish eye,” Seminars in Cell & Developmental Biology, vol. 19, no. 2, pp. 94–99, Apr. 2008. [56]L. Bredow, J. Schwartzkopff, and T. Reinhard, “Regeneration of corneal endothelial cells following keratoplasty in rats with bullous keratopathy,” vol. 20, May 2014. [57]L. Nelson, D. Hodge, and W. Bourne, “Central corneal endothelial cell changes over a ten-year period,” American Journal of Ophthalmology, vol. 124, no. 2, pp. 273–274, Aug. 1997. [58]R. S. Wilson and M. J. Roper-Hall, “Effect of age on the endothelial cell count in the normal eye,” British Journal of Ophthalmology, vol. 66, no. 8, pp. 513–515, Aug. 1982. [59]M.-M. Gagnon, H. M. Boisjoly, I. Brunette, M. Charest, and M. Amyot, “Corneal endothelial cell density in glaucoma,” Cornea, vol. 16, no. 3, pp. 314–318, May 1997.
|