跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏柏文
研究生(外文):Yan,Bo-Wen
論文名稱:香蕉成熟過程澱粉組成及理化性質變化
論文名稱(外文):Changes of Compositions and Physicochemical Properties of Banana Starch During Ripening
指導教授:王俊權王俊權引用關係
指導教授(外文):Wang,Chun-Chuan
口試委員:江伯源許成光
口試委員(外文):Chiang,Po-YuanHsu,Cheng-Kuang
口試日期:2014-12-12
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:116
中文關鍵詞:催熟處理香蕉澱粉抗性澱粉糊化性質微細結構游離醣總醣
外文關鍵詞:Ripening TreatmentBanana StarchResistant StarchPasting CharacteristicsMicrostructureTotal sugarFree sugar
相關次數:
  • 被引用被引用:3
  • 點閱點閱:3893
  • 評分評分:
  • 下載下載:323
  • 收藏至我的研究室書目清單書目收藏:1
本研究的目的在於探討剛採收的香蕉在人工催熟過程,香蕉粉及其澱粉含量與理化性質的變化。本實驗在綠香蕉採收後,利用乙烯(1000 ppm)進行催熟處理,置於低溫(12-15℃)下,並依果皮顏色變化分為七階段逐一取出進行總澱粉、抗性澱粉含量與理化性質的分析。結果顯示綠香蕉的總澱粉與抗性澱粉的含量,從剛採收時分別為76.2%和34.6%,隨著催熟時間的延長,酵素作用下,含量分別具顯著降低至25.3%和8.8%。游離糖也隨催熟時間的延長而增加。隨著催熟時間延長,香蕉粉的膨潤力逐漸降低,但溶解度逐漸增加,推測澱粉含量減少是影響膨潤力最主要的因子。香蕉非水可溶物質及非酒精可溶物隨催熟時間增加而減少,而水溶性纖維則增加。隨催熟時間延長,香蕉粉的糊化溫度範圍有逐漸變大,且在催熟第七階段糊化溫度範圍呈現雙波峰,顯示香蕉在催熟過程,香蕉粉的澱粉比率降低而游離糖增加所致。香蕉粉的糊化熱焓值隨催熟時間延長有變小的現象。香蕉澱粉的糊化性質與香蕉粉類似,但成熟的香蕉澱粉則無糊化雙峰的現象。香蕉粉的成糊性質分析顯示,剛採收的綠香蕉粉由於澱粉最高,呈現最大的尖峰黏度(peak viscosity)與黏度回升值(setback)性質。香蕉澱粉的微細結構圖型顯示,香蕉澱粉分子大小分為兩大族群(橢圓形vs.長條形),分子大小介於10-50μm。隨著催熟時間的延長,綠香蕉澱粉由光滑的外觀,逐漸呈現模糊與不完整的外觀,可能是澱粉顆粒在催熟過程會受到酵素的作用,而逐漸改變澱粉顆粒的外觀。
The objectives of this study were to investigate the changes of starch content and physicochemical properties of banana flours and banana starch in the different ripening stages. Unripe banana were treated with ethylene gas and stored at low temperature (15℃) for seven days during ripening. The changes of total starch, resistant starch, chemical compositions and physicochemical properties were analyzed each day during ripening.
The results showed the total starch and resistant starch content of banana flours in the different ripening stages were 76.2% and 34.6%, respectively at the harvest stage. Both total starch and resistant starch content were significantly declined to 25.3% and 8.8%, respectively with progress of ripening. Free sugar content of banana increased with the increases of ripening stage. Swelling power of banana flour decreased with the increases of ripening stage, but solubility increased. These phenomenon could be the decreases of starch content of banana flour during ripening. Both water insoluble and alcohol insoluble solids of banana flour decreased with the progress of ripening stage. The water-soluble fiber of banana flour increased with the increases of ripening stage. As ripening stage extended, the ranges of gelatinization temperature of banana flours increased. Two endothermic peaks were appeared at the stage 7 that could be the increases of free sugar content in the banana flour during ripening. Gelatinization enthalpy of banana flour decreased with the increases of ripening stage. The similar results of gelatinization characteristics were observed in bananas flour and banana starch. The highest peak viscosity and setback of pasting properties of banana flour were observed in the stage 1 of unripen banana because of high starch content. The scanning electron micrograph of banana starch showed the size of starch granular ranged in 10-50 μm. The shapes banana starch appeared to be round and rectangle on the unripe stage. Broken granular gradually appeared on the surface of banana starch granular with the progress of ripening that could be caused by enzyme reaction during ripening.

摘 要 I
ABSTRACT II
目 錄 IV
表目錄 VII
圖目錄 VIII
壹、前言 1
貳、文獻回顧 3
一、香蕉 3
A、品種介紹 3
B、改良品種 4
C、香蕉成分 6
D、更性水果及非更性水果 6
E、香蕉成熟過程中成分的變化 7
F、香蕉果皮顏色分類 9
二、澱粉 14
A、澱粉簡介 14
B、澱粉顆粒的結晶性質 14
C、澱粉的糊化性質 15
三、抗性澱粉 26
A、抗性澱粉介紹 26
B、抗性澱粉的生成因素 26
C、抗性澱粉的分類 27
D、抗性澱粉的益處 31
參、研究目的 33
肆、材料與方法 34
一、實驗架構 34
二、實驗材料 35
三、實驗方法 35
I. 香蕉粉和香蕉澱粉製備 35
II. 香蕉粉物性測試 36
(1) X-ray 繞射分析 36
(2) 熱焓性質 36
(3) 成糊性質(Deffenbaugh et al., 1989): 36
(4) 膨潤力及溶解力(Roach et al., 1995): 37
(5) 色澤分析 37
III. 香蕉粉總澱粉與抗性澱粉含量分析 38
(1) 香蕉總澱粉分析(Megazyme KIT法): 38
(2) 抗性澱粉分析(Megazyme KIT法): 39
IV. 香蕉粉一般成份分析及總膳食纖維含量 41
(1) 一般成分分析: 41
(2) 總醣分析 41
(3) 游離糖測定 41
(4) 總膳食纖維含量 41
(5) 非醇溶性固形物測定 42
(6) 非水溶性固形物測定 43
(7) 水溶性物質測定 43
V. 統計分析 44
伍、結果與討論 45
(一)香蕉粉末基本成分及色澤 45
(二)澱粉及抗性澱粉含量變化 50
(三)膨潤力及溶解度 56
(四)總醣及游離醣含量變化 60
(五)熱焓性質 65
(六)成糊性質 71
(七)結晶型態 77
(八)微細結構 82
(八)纖維含量 85
陸、結論 91
參考文獻 92


王俊權、洪憶萍、蕭棋娟、張永和。1998。 氯化鈉與糖對芋頭澱粉糊化及回凝的影響。食品科學,25 : 22-31。
蘇瑋琛。2011。滲透壓與濕熱—磷酸化處理對綠豆澱粉及菱角澱粉抗性澱粉含量與理化性質的影響。碩士論文。靜宜大學食品營養學系。台中市。
蔡弘聰。2010。台灣之寶-香蕉。行政院農委會農糧署。鄉間小路月刊,38。
蘇盈嘗。2011。春雷響譜一場蕉響樂。行政院農委會農糧署。鄉間小路月刊,13-15。
廖彬仲。2010。探討滲透壓與濕熱-磷酸化處理隊山藥澱粉理化性質與抗性澱粉含量的影響。靜宜大學食品營養學系碩士論文。台中市。
楊紹榮、魏彥青、李淑英。1981。Grande Naine 與北蕉香蕉品種生育特性之比較。中國園藝,27 : 35-43。
張為憲、張基郁、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、嚴國欽、林志城、林慶文。1997。食品化學。華香園出版社。台北,台灣。
楊公明、王娟、程燕鋒、陳人人、李遠志。(2007)。香蕉粉的功能、加工現狀及新技術。食品與生物科技學報,26(5),121-126。
陳紋慧。2014。臺灣蔾穀粉膳食纖維理化性質分析及對第2型糖尿病患餐後血糖之影響。碩士論文。大葉大學生物科技暨資源學系。彰化縣。
許誌娟。2014。支鏈澱粉酶與冷凍解凍處理及脂肪酸添加對山藥澱粉的抗性澱粉含量及其理化性質的影響。碩士論文。靜宜大學食品營養學系。台中市。
康佩慈。2007。鳳梨心高纖麵包研發與品質特性之探討。台南科技大學生活應用科學研究所碩士論文。台南市。
施明智。1999。食物學原理。藝軒圖書出版社。台北市。
范哲瑋。2012。成長過程稻米的化學組成及糖解酶活性的變化與冷熱刺激對發芽米的γ-胺基丁酸含量之變化。碩士論文。靜宜大學食品營養學系。台中市。
李惠如。2012。重組抗凍蛋白及聚麩胺酸於香蕉貯藏及冷凍加工之應用研究。中興大學食品暨應用生物科技學系碩士論文。台中市。
李允先、許永鑫、黃湞鈺。(2013)。台灣北蕉在熟成過程中之物化與生化特性。餐旅暨觀光,10,113-127。
黃耀正。1986。香蕉在成熟及後熟過程中成分及生理化學變化之研究。台灣大學農化所碩士論文。台北市。
曾郁儒。2000。硬心香蕉與青丹蕉特性之探討。屏東科技大學食品科學系碩士論文。屏東市。
行政院衛生署:健康食品營養成分及含量之標示方式(2004)
行政院衛生署:市售包裝食品營養宣稱規範(2007)
李淑英、趙治平、袁秋英。2012。植物保護圖鑑系列18-香蕉保護。行政院農委會動植物防疫檢疫局
台灣香蕉研究所。香蕉新品種「新北蕉」品種特性及栽培管理。
Abeles, F. B., Morgan, P. W., & Saltveit, M. E., Jr. (1992). "Ethylene in Plant Biology" 2d Ed. Academic Press, San Diego.
Alkarkhi, A.F.M., Ramli, S.B., Yong, Y.S., & Easa, A.M. (2011). Comparing physicochemical properties of banana pulp and peel flours prepared from green and ripe fruits. Food Chemistry, 129, 312-318
Aparicio-Saguilán, A., Aguirre-Cruz, A., Méndez-Montealvo, G., Rodriguez-Ambriz, S. L., Garcia-Suarez, F. J., Páramo-Calderón, D. E., & Bello-Pérez, L. A. (2014). The effect of the structure of native banana starch from two varieties on its acid hydrolysis. Food Science and Technology, 58, 381-386.
Aparicio-Saguilán, A., Flores-Huicochea, E., Tovar, J., García-Suárez, F., Gutiérrez-Meraz, F., & Bello-Pérez, L. A. (2005). Resistant starch-rich powders prepared by autoclaving of native and lintnerized banana starch: Partial characterization. Starch, 57, 405-412.
Aurore, G., Parfait, B., & Fahrasmane, L. (2008). Bananas, raw materials for making processed food products. Trends in Food Science & Technology, 10, 1-13.
Aurore, G., Parfait, B., & Fahrasmane, L.(2009). Bananas, raw materials for making processed food products. Trends in Food Science and Technology , 20, 78-91.
Aziz, N. A. A., Ho, L.-H., Azahari, B., Bhat, R., Cheng, L.-H., & Ibrahim, M. N. M. (2011). Chemical and functional properties of the native banana (Musa acuminata x balbisiana Colla cv. Awak) pseudo-stem and pseudo-stem tender core flours. Food Chemistry, 128, 748-753.
Bello-Pérez, L. A., Agama-Acevedo, E., Sánchez-Hernández, L., & Paredes-López, O. (1999). Isolation and partial characterization of banana starches. Journal of Agricultural and Food Chemistry , 47, 854-857.
Bello-Pérez, L. A., De Francisco, A., Agama-Acevedo, E., Gutierrez-Meraz, F., & García-Suarez, F. J. L. (2005). Morphological and molecular studies of banana starch. Food Science and Technology International, 11, 367-372.
Bello-Perez, L. A., Agama-Acevedo, E., Sayago-Ayerdi, S. G., Moreno- Damian, E., & Figueroa, J. D. C. (2000). Some structural, physicochemical and functional studies of banana starches isolated from two varieties growing in Guerrero, Mexico. Starch/Staerke, 52, 68–73.
Behall, K. M., Scholfield, D.J., Hallfrisch, J. G. (1986). Fasting glucose and insulin and measures of insulin resistance of men after consumption of whole wheat/brown rice or barley. (Abstract). J Am Coll Nutr 21:486,2002.
Berry, C. S.. Resistant starch : Formation and measurement of starch that survives exhaustive digestion with amylolytic enzyme during the determination of dietary fiber. Journal of Cereal Science, 4, 301-314.
Biliaderis, L. G., Maurice, T. J., & Vose, J. R. (1980). Starch gelatinization phenomeana studied by differential scanning calorimetry. Food Scientence, 45, 1669-167.
Brumovsky, J. O., & Thompson, D. B. (2001). Production of boiling-stable granular resistant starch by partial acid hydrolysis and hydrothermal treatment of high-amylose maize starch. Cereal Chemistry, 78, 680-689.
Brouns, F., Kettliz, B., & Arrigoni, E. (2002). Resistant starch and butyrate revolution. Trends in Food Science & Technology, 13, 251-261.
Brown, I. L., Wang, X., Topping, D. L., Playne, M. J., & Conway, P. L. (1998). High amylose maize starch as a versatile prebiotic for use with probiotic bacteria. Food Australia, 50, 602-609.
Burg, S. P. & Burg, E. A. (1965). Relationship between ethylene production and ripening in banana. Bot. Gaz. 126, 200-204.
Cai, J., Cai, C., Man, J., Zhou, W., Wei, C. (2014). Structural and functional properties of C-type starches. Carbohydrate Polymers, 101, 289-300.
Carmona-Garcia, R., Sanchez-Rivera, M. M., Méndez-Montealvo, G., Garza-Montoya, B., Bello-Pérez, L. A. (2009). Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). Carbohydrate Polymers, 76, 117-122.
CEAGESP, 2006. PBMH & PIF – Programa Brasileiro para a Modernizac¸ ão da Horticultura & Produc¸ ão Integrada de Frutas. Normas de Classificac¸Banana . CEAGESP, São Paulo, Brazil
Chang, Y. -H., Lin, J. -H., Lii, C.-Y. (2004). Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohydrate Polymers, 57, 89-96.
Chen F. Q., Zhang B. S., Lu H. F., Zhao Y. Q., & Zhang X. Y. (2010). A Review of Application of X ray Diffraction in Crystal Structure Determination of Starch Granules. Food Chemistry, 31, 284-287.
Cheng, B. Q., Trimble, R. P., Illman, R. J., Stone, B. A., & Topping, D. L. (1987). Comparative effects of dietary wheat bran and its morphological components (aleurone and pericarp-seed coat) on volatile fatty acid concentrations in the rat. British Journal of Nutrition, 57, 69-76.
Cheng, H. H., Lai, M. H. (2000). Fermentation of resistant rice starch produces propionate reducing serum and hepatic cholesterol in rats. Journal of Nutrition, 130, 1991-1995.
Cheng, G., Duan, X., Jiang, Y., Sun, J., Yang, S., Yang, B., He, S., Liang, H., & Luo, Y. (2009). Modification of hemicellulose polysaccharides during ripening of postharvest banana fruit. Food Chemistry, 115, 43-47.
Choo, C. L., & Aziz, N. A. A. (2010) Effects of banana flour and b-glucan on the nutritional and sensory evaluation of noodles. Food Chemistry, 119, 34-40.
Choct, M., Illman, R. J., Biebrick, D. A., & Topping, D. L. (1998). White and wholemeal flours from wheats of low and higher apparent metabolisable energy differ in their nutritional effects in rats. Journal of Nutrition, 128, 234-238.
Cordenunsi, B. R., Lajolo, F. M. (1995). Starch breakdown during banana ripening: sucrose synthase and sucrose phosphate synthase. Journal of Agricultural and Food Chemistry. 43(2):347-357.
Daniali, G., Jinap, S., Hanifah, N. L., & Hajeb, P. (2013). The effect of maturity stages of banana on the formation of acrylamide in banana fritters. Food Control, 32, 386-391.
Debet, M. R., & Gidley, M. J. (2006). Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydrate Polymers, 64, 452-465.
Deffenbaugh, L. B., & Walker, C. E.(1989). Use of the Rapid-Visco-Analyzer to Measure Starch Pasting Properties. Part I: Effect of Sugars. Starch, 41, 461-467.
Demarco, H. M., Sucher, K. P., Cisar, C. J., & Butterfield, G. E. (1999). Pre-exercise carbohydrate meals: application of glycemic index. Medicine and Science in Sports and Exercise, 31, 164-170.
Duan, X., Cheng, G., Yang, E., Yi, C., Ruenroengklin, N., Lu, W., Luo. Y., & Jiang, Y. (2008). Modification of pectin polysaccharides during ripening of postharvest banana fruit. Food Chemistry, 111, 144-149.
DuBois, M., Gilles, K., Hamilton, J., Rebers, P., & Smith, F.(1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.
Eerlingen, R. C., Cillen, G., & Delcour, J. A. (1994). Enzyme-resistant starch. IV. Effect of endogenous lipids and added sodium dodecyl sulfate on formation of resistant starch. Cereal chemistry, 71, 170-177.
Eerlingen, R. C., & Delcour, J. A. (1995). Formation, analysis, structure and properties of type III enzyme resisitant starch. Journal of Cereal Science, 22, 129-138.
Eerlingen, R., Deceuninck, M., & Delcour, J. (1993). Enzyme-resistant Starch.2 . Influence of amylose chain-Length on resistant starch formation. Cereal Chemistry, 70, 345-350.
El-Zogibi M. 1994. Biochemical changes in some tropical fruits during ripening. Food Chem.49:33-37.
Emaga, H. T., Andrianaivo, R.H., Wathelet, B., Tchango, J.T., & Paquot, M. (2007). Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels, 103, 590-600
Englyst, H. N., & Kingman, S. M.,(1990). Dietary fiber and resistant starch. A nutritional classification of plant polysaccharides. In D. Kritchevsky, C. Bonfield & J. W. Anderson. Dietary fiber, (pp. 46-65) New York : Plenum Press.
Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, 33-55.
Englyst, H. N., Wiggins, H. S., & Cummings, J. H. (1982). Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. The Analyst, 107, 307-318.
Englyst, H. N., & MacFarlane, G. T. (1986). Breakdown of resistant and readily digestible starch by human gut flora. Journal of Science of Food and Agriculture, 37, 699-706.
Faraja, A., Vasanthan, T., & Hoover, R. (2004). The effect of extrusion cooking on resistant starch formation in waxy and regular barley flours. Food Research International, 37, 517-527.
Faisant, N., Buleon, A., Colonna, P., Molis, C., Lartigue, S., Galmiche, J. P., & Champ,M. (1995). Digestion of raw banana starch in the small intestine of healthy humans: Structural features of resistant starch. British Journal of Nutrition, 73, 111–123.
Faisant, N., Gallant, D. J., Bouchet, B., & Champ,M. (1995). Banana starch breakdown in the human small intestine studied by electron microscopy. European Journal of Clinical Nutrition, 49, 98–104.
Fils-Lycaon, B., Julianus, P., Chillet, M., Galas, C., Hubert, O., Rinaldo, D., & Mbéguié-A-Mbéguié, D. (2011). Acid invertase as a serious candidate to control the balance sucrose versus (glucose + fructose) of banana fruit during ripening. Scientia Horticulturae, 129, 197-206.
Fiordaliso, M., Kok, N., Desager, J. P., Goethals, F., Deboyser, D., Roberfroid, M., & Delzenne, N. (1995). Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids, 30, 163-167.
Fuentes-Zaragoza, E., Riquelme-Navarrete, M. J., Sánchez-Zapata, E., & Pérez-Álvarez, J.A. (2010). Resistant starch as functional ingredient: A review. Food Research International, 43, 931-942.
Fuentes-Zaragoza, E., Riquelme-Navarrete, M. J., Sánchez-Zapata, E., & Pérez-Álvarez, J. A. (2010). Resistant starch as functional ingredient: A review. Food Research International, 43, 931-942.
Garcia, E., & Lajolo, F. M. (1988). Starch transformation during banana
ripening: The amylase and glucosidase behavior. Journal of Food
Science, 53, 1181–1186.
Gomes, J. F. S., Vieira, R. R., & Leta, F. R. (2013). Colorimetric indicator for classification of bananas during ripening. Scientia Horticulturae, 150, 201-205.
Goñi, I., García-Diz, L., Mañas, E., & Saura-Calixto, F. (1996). Analysis of resistant starch: A method for foods and food products. Food Chemistry, 56, 445-449.
González-Soto, R. A., Mora-Escobedo, R., Hernandez-Sanchez, H., Sanchez-Rivera, M., & Bello-Perez, L. A. (2007). The influence of time and storage temperature on resistant starch formation from autoclaved debranched banana starch. Food Research International, 40, 304-301.
Han, X.Z. and Hamaker, B.R. 2002. Location of starch granule-associated proteins revealed by confocal laser scanning microscopy (Rapid Communication). Journal of Cereal Science, 35,109-116.
Han, K. H., Fukushima, M., Kato, T., Kojima, M., Ohba, K., Shimada, K. I., Sekikawa, M., & Nakano, M. (2003). Enzyme-resistant fractions of beans lowered serum cholesterol and increased sterol excretions and hepatic mRNA levels in rats. Lipids, 38, 919-924.
Happi Emaga, T., Andrianaivo, R. H., Wathelet, B., Tchango, J. T., Paquot, M. (2007) Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chemistry, 103, 590-600
Happi Emaga, T., Robert, C., Ronkart, S. N., Wathelet, B., Paquot, M. (2008). Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresource Technology, 99, 4346-4354.
Haralampu, S. G. (2000). Resistant starch - a review of the physical properties and biological impact of RS3. Carbohydrate Polymers, 41, 285-292.
Hizukuri, S. (1986). Polymodal distribution of the chain lengths of amylopection and its significance. Carbohydrate Research, 147, 342-347.
Hizukuri, S. (1996). Starch : Analytical aspects. In A. C. Eliasson (Ed.). Carbohydrate in Food. (pp. 347-429). New York: Marcel Dekker, Inc.
Holm, J., Björck, I., Ostrowska, S., Eliasson, A. C., Asp, N. G., Larsson, K., & Lundquist, I. (1983). Digestibility of Amylose-Lipid Complexes in-vitro and in-vivo. Starch, 35, 294-297.
Hoover, R., & Vasanthan, T. (1994). Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches. Carbohydrate Research, 252, 33-53.
Hoover, R., & Hadziyev, D. (1981). The Effect of Monoglycerides on Amylose Complexing During a Potato Granule Process. Starch – Stärke, 33, 346-355.
Hoover, R., & Manuel, H. (1996). The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. Journal of Cereal Science, 23, 153-162.
Hung, P. V., Cham, N. T. M., & Truc, P. T. T. (2013).Characterization of Vietnamese banana starch and its resistant starch improvement. International Food Research Journal, 20, 205-211.
Illman, R. J., Store, G. B., & Topping, D. L. (1993). White wheat flour lowers plasma cholesterol and increases cercal steroids relative to whole wheat flour, wheat bran and wheat pollard in rats. Journal of Nutrition, 123, 1094-1100.
Jane, J. L., Wong, K. S., & McPherson, A. E. (1997). Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydrate Research, 300, 219–227.
Kayisu, K., & Hood, L. F. (1981). Molecular structure of banana starch. Journal of Food Science, 46, 1894–1897.
Kim, W. K., Chung, M. K., Kang, N. E., Kim, M. H., & Park, O. J. (2003). Effect of resistant starch from corn or rice on glucose control, colonic events, and blood lipid concertrations in streptozotocin-induced diabetic rats. Jourmal of Nutritional Biochemistry, 14, 166-172.
Kishida, T., Nogami, H., Himeno, S., & Ebihara, K. (2001). Heat moisture treatment of high amylose cornstarch increases its resistant starch content but not its physiologic effects in rats. Journal of Nutition, 131, 2716-2721.
Kohyama, K., & Nishinari, K. (1991). Effect of soluble sugars on gelatinization and retro gradation of sweet potato starch. Food Chemistry, 39, 1406-1410.
Lærke, H. N. , Meyer, A. S., Kaack, K. V., & Larsen, T. (2007). Soluble fiber extracted from potato pulp is highly fermentable but has no effect on risk markers of diabetes and cardiovascular disease in Goto-Kakizaki rats. Nutrition Research, 27, 152-160.
Labib A. A. S., El-Ashwah F. A., Omran H. T., Askar A. 1995. Heat-inactivation of mango pectinesterase and polygalacturonase. Food Chem.53:137-142.
Leszczyñski, W. (2004). Resistant starch – classification, structure, production. Polish Journal of Food and Nutrition Sciences, 13/54, 37-50.
Lii, C. Y., Chang, S. M., & Young, Y. L. (1982). Investigation of the physical and chemical properties of banana starches. Journal of Food Science, 47, 1493–1497.
Liu, Y. Q., Qin, L. X., & Wang, X. J. (2010). Preparation and Crystal Structure Characteristics of Starch-Ligand Complex. Journal of Food Science and Biotechnology, 29, 1673-1689.
Lokesh, V., Divya, P., Puthusseri, B., Manjunatha, G., & Neelwarne, B. (2014). Profiles of carotenoids during post-climacteric ripening of some important cultivars of banana and development of a dry product from a high carotenoid yielding variety. Food Science and Technology, 55, 59-66.
MacFarlane, S., & MacFarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proceeding of the Nutrition Society, 62, 67-72.
Massiot, P., & Renard, C. M. G. C. (1997). Composition, Physico-chemical Properties and Enzymatic Degradation of Fibres Prepared from Different Tissues of Apple. Food Science and Technology, 30, 800-806.
McIntyre, A., Gibson, P. R., & Young, G. P. (1993). Buyrate production from dietary fibre and protection against large bowel cancer. Gut, 34, 386-391.
Nara, S., & Komiya, T. (1983). Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch, 35, 407-410.
Nakazawa, F., Noguchi, S., Takahashi, J., & Takada, M. (1984). Gelatinization and retrogradation of rice starch studied by differential scanning calorimetry. Agricultural and Biological Chemistry, 48, 201-203.
Niba, L. L. (2002). Resistant starch:a potential functional food ingredient. Nutrition & Food Science, 32, 62-67.
Nugent, A. P. (2005). Healthy properties of resistant starch. British Nutrition Foundation Nutrition Bulletin, 30, 27-54.
Ovando-Martinez, M., Sáyago-Ayerdi, S., Agama-Acevedo, E., Goñi, I., & Bello-Pérez, L. A. (2009). Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chemistry, 113, 121-126.
Pérez, S., Baldwin, P. M., & Gallant, D. J. (2009). Structural Features of Starch Granules I. Starch, 149-192.
Peroni-Okita, F. H. G., Cardoso, M. B., Agopian, R. G. D., Louro, R. P., Nascimento, J. R. O., Purgatto, E., Tavares, M. I. B., Lajolo, F. M., & Cordenunsi, B. R. (2013). The cold storage of green bananas affects the starch degradation during ripening at higher temperature. Carbohydrate Polymers, 96, 137-147.
Peroni-Okita, F. H. G., Simão, R. A., Cardoso, M. B., Soares, C. A., Lajolo, F. M., & Cordenunsi, B. R. (2010). In vivo degradation of banana starch: Structural characterization of the degradation process. Carbohydrate Polymers, 81, 291-299.
Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena -an overview. Critical Reviews in Food Science and Nutrition, 47, 1-19.
Prabha T. N., & Bhagyalakshmi, N. (1998). Carbohydrate metabolism in ripening banana fruit. Phytochemistry, 48(6), 915-919.
Raghavendra, S. N., Ramachandra Swamy, S. R., Rastogi, N. K., Raghavarao, K. S. M. S., Kumar, S., & Tharanathan, R. N. (2006). Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. Journal of Food Engineering, 72, 281-286.
Ratnayake, W. S., & Jackson, D. S. (2007). A new insight into the gelatinization process of native starches. Carbohydrate Polymers, 67, 511-529.
Ratnayake, W. S., & Jackson, D. S. (2008). Thermal Behavior of Resistant Starches RS2, RS3, and RS4. Journal of Food Science, 73, 356-366.
Roach, R. R., & Hoseney, R. C. (1995). Effect of certain surfactants on the swelling, solubility and amylograph consistency of starch. Cereal Chemistry, 72, 571-577.
Robertson, M. D., Currie, J. M., Morgan, L. M., Jewell, D. P., & Frayn, K. N. (2003). Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia, 46, 659-665.
Saunders J. (2010). Physicochemical properties of select western canadian wheat starches and their relationship to liquefaction and fermentative bio-ethanol performance. M.Sc. Thesis, University of Manitoba, Winnipeg, Manitoba, Canada.
Schoch, T. J., & Maywald, E. C. (1968). Preparation and properties of various legume starches. American Association of Cereal Chemists, 45, 564-573.
Shrestha, A. K., Ng, C. S., Lopez-Rubio, A., Blazek, J., Gilbert, E. P., & Gidley, M. J. (2010). Enzyme resistance and structural organization in extruded high amylose maize starch. Carbohydrate Polymers, 80, 699-710.
Silvert, D., & Pomeranz, Y. (1989). Enzyme-resistant starch I. Characterization and evaluation by enzymatic, thermoanalyitcal, and microsocopic methods. Cereal Chemistry, 66, 342-347.
Smith, J. G., Yokoyama, W. H., & German, B. G. (1998). Butyric acid from the diet : actions at the level of gene expression. Clinical Reviews in Food Science, 38, 259-297.
Spies R. D., & Hoseney, R. C. (1982). Effects of sugars on starch gelatinization. Cereal Chemistry, 59, 128-131.
Someya, S., Yoshiki, Y., & Okubo, K. (2002). Antioxidant compounds from bananas (Musa Cavendish). Food Chemistry, 79, 351-354.
Taipina, M. S., Garbelotti, M. L., Lamardo, L. C. A., & Balian, C. S. (2014).Nutritional composition of green banana flour irradiated (gluten-free). Agricultural Advances,3 (5),170-175.
Tecante, A., & Doublier, J. L. (1999). Steady flow and viscoelastic behavior of crosslinked waxy corn starch-κ-carrageenan pastes and gels. Carbohydrate Polymers, 40, 221-231.
Terra, N. N., Garcia, E. & Lakolo, F. M. (1983). Starch –sugar transformation during banana ripening. Journal of Food Science, 48, 1097.
Teixeira, M. A. V., Ciacco, C. F., Tavares, D. Q., & Bonezzi, A. N. (1998). Occurrence and characterization of resistant starch from corn and banana starch. Ciência e Tecnologia de Alimentos, 18, 246–253.
Tester, R. F., & Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipid. Cereal Chemistry, 67, 551-557.
Tribess, T. B., Hernández-Uribe, J. P., Méndez-Montealvo, M. G. C., Menezes, E. W., Bello-Perez, L. A., & Tadini, C. C. Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. Food Science and Technology, 42, 1022-1025.
Thompson, D. B. (2000). Strategies for the manufacture of resistant starch. Trends in Food Science & Technology, 11, 245-253.
Thomas, D. J., & Atwell, W. A. (1999). Starches. Minnessota: The American Association of Cereal Chemists, Inc.
Topping, D. L., & Clifton, P. M. (2001). Short chain fatty acids and human colonic function. Relative roles of resistant starch and non-starch polysaccharides. Physiological Review, 81, 1031-1064.
Utrilla-Coello, R. G., Rodríguez-Huezo, M. E., Carrillo-Navas, H., Hernández-Jaimes, C., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2014). In vitro digestibility, physicochemical, thermal and rheological properties of banana starches. Carbohydrate Polymers, 101, 154– 162.
Van de Poel, B., Vandendriessche, T., Hertog, M. L. A. T. M., Nicolai, B. M., & Geeraerd, A. (2014). Detached ripening of non-climacteric strawberry impairs aroma profile and fruit quality. Postharvest Biology and Technology, 95, 70-80.
Wada, Takahashi, Shirai, & Kawamura. (1979). Differential thermal analysis (DTA) applied to examining gelatinization of starches in foods. Journal of Foof Science, 44, 1366-1368.
Walter, M., Silva, L. P. D., & Denardin, C. C. (2005). Rice and resistant starch : Different content depending on chosen methodology. Journal of Food Composition and Analysis, 18, 279-285.
Wang, X., Conway, P. L., Brown, I. L., & Evans, A. J. (1999). In vitro utilixation of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria. Applied and Environmental Microbiology, 65, 4848-4854.
Wang, J., Tang, X. J., Chen, P. S., & Huang, H. H. (2014). Changes in resistant starch from two banana cultivars during postharvest storage. Food Chemistry, 156, 319-325.
Waliszewski, K. N., Aparicio, M. A., Bello, L. A., & Monroy, J. A. (2003). Changes of banana starch by chemical and physical modification. Carbohydrate Polymers, 52, 237–242.
Whistler, L. (1964). Method in carbohydrate chemistry iv. P.240-242., Ed. Academic Press New York and London.
Wills, R. B. H., McGlasson, W. B., Graham, D., Lee, T. H. & Hall, E. G. (1989). Physiology and biochemistry of fruit and vegetables. IN:Postharvest. Van Nostrand Reinhold. New York. Pp.17-38.
Xie, X. J., & Liu, Q. (2004). Development of new resistant starch-citrate starch as a functional food ingredient. Starch, 56, 364-370.
Yu, L. H., Yang J. H., Meng, Q. J., Yang, Y., & Ma Y. H. (2012). Fast determination of maize starch content in cornflour. Shandong Science, 25, 19-23.
Zacherl, C., Eisner, P., & Engel, K.-H. (2011). In vitro model to correlate viscosity and bile acid-binding capacity of digested water-soluble and insoluble dietary fibres. Food Chemistry, 126, 423-428.
Zhang Y. F., & Cheng, B. J. (2007). A determination method for amylose content in half-grain maize. Journal of Maize Sciences, 15, 70-72
Zhang, P., & Hamaker, B. R. (2012). Banana starch structure and digestibility. Carbohydrate Polymers, 87, 1552-1558
Zhang, P., Whistler, R.L., Bemiller, J.N., & Hamaker, B.R. (2005). Banana starch: production, physicochemical properties, and digestibility—a review. Carbohydrate Polymers, 59, 443-458.
Zhang, P., Wampler, J. L., Bhunia, A. K., Burkholder, K. M., Patterson, J. A., &Whistler, R. L. (2004). Effects of arabinoxylans on activation of murine macrophages and growth performance of broiler chicks. Cereal Chemistry, 81, 511–514.
Zhou S. C., Liu G. Q., & Li, L. (2009). Study on the preparation and application of resistant starch. Science and Technology of Cereals, Oils and Foods, 17, 51-56.
Zobel, H. F. (1988). Starch crystal transformations and their industrial importance. Starch, 40, 1-7.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top