跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/10 13:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張凱傑
研究生(外文):Kai-Chieh Chang
論文名稱:美國E-mini股票期貨與台灣股票期現貨日內報酬之動態關係
論文名稱(外文):The Dynamic Linkage between the Intraday Returns of the U.S. E-mini Stock Index Futures and Taiwan’s Spot and Future Stock Indices
指導教授:江福松江福松引用關係賴奕豪賴奕豪引用關係
指導教授(外文):Fu-Sung ChiangYi-Hao Lai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:應用經濟研究所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:56
中文關鍵詞:E-mini指數期貨高頻日內資料VAR模型VECM模型預測誤差變異衝擊
外文關鍵詞:E-miniIntradayVECMGranger causalityVariance decompositionImpulse response
相關次數:
  • 被引用被引用:2
  • 點閱點閱:620
  • 評分評分:
  • 下載下載:136
  • 收藏至我的研究室書目清單書目收藏:1
本論文採用15分鐘高頻日內資料,探討美國E-mini股價指數期貨與台股指數現貨及期貨關聯性。E-mini指數期貨為24小時電子化交易,且價格發現功能明顯優於美股其他種類指數期貨。因此,透過研究E-mini與台股日內報酬之關聯性,將可討論美股對台股盤中即時影響。研究方法先針對指數資料與報酬率資料作單根檢定,以確定數列資料在一階差分之後是否為定態。再依照共整合檢定結果決定使用VAR模型或VECM模型,並根據Granger因果關係檢定、預測誤差變異數分解及衝擊反應函數結果分析E-mini與台股期現貨之關聯性。實證結果如下:
一、指數原始資料為非定態序列,一階差分後之報酬率資料呈現定態
序列,表示時間序列資料為I(1)數列。
二、E-mini與台股期、現貨間存在一組共整合向量,顯示E-mini與
台股期、現貨間具有長期均衡關係。
三、因果關係檢定結果發現,台股現貨報酬率單向影響E-mini及台
股期貨報酬率;E-mini及台股期貨報酬率為雙向回饋關係。
四、台股現貨報酬率之預測誤差變異6%至8%可由E-mini解釋;台
股期貨報酬率預測誤差變異可由E-mini解釋部分約占8%至
10%。
五、由衝擊反應函數可知,E-mini報酬率的衝擊對台股現貨與期貨報
酬率會產生正向影響,影響時間約45分鐘。
綜合以上結果,E-mini的變動對台股期現貨短期為正向影響,且影響時間延續約45分鐘,對台股期現貨盤中走勢,具有即時影響。本文建議投資人進行投資決策時,除觀察歐、美股市前一交易日收盤狀況與日、韓、港等國股市即時走勢外,亦可參考E-mini的盤中變動情形做為判斷台股多空的指標。此外,當E-mini發生明顯正向變動時,投資人可利用此訊息在期貨市場作短線積極性操作;若E-mini發生明顯負向變動時,則建議暫時降低手中期貨多頭部位。

關鍵詞:E-mini指數期貨、高頻日內資料、VAR模型、VECM模型、
預測誤差變異、衝擊
This study applies Johansen Cointegration Test (JC), Vector Error Correction Model (VECM), Granger Causality Test (GC), Impulse Response Analysis (IRA) and Variance Decomposition (VD) to data on 15-minute returns in the U.S. E-mini index futures and the Taiwan stock index spot and futures markets for investigating the intraday dynamic linkage between Taiwan and the U.S. stock markets. Good price discovery functions and the 24-hour electronic trading system of the E-mini index futures market make it possible to examine the synchronous impacts between two non-synchronous trading markets, which can not be achieved in previous literature. The empirical findings are summarized as follows:
1.All indices are non-stationary and the corresponding returns are stationary, implying the data are I(1) time series.
2.One cointegration vector exists among the E-mini index futures and the Taiwan index spot and futures markets, indicating a long-term equilibrium relationship.
3.The returns on Taiwan stock index spot market leads the returns on the three E-mini and the Taiwan index futures markets. Besides, there is a feedback relationship between the returns on the E-mini and the Taiwan stock index futures markets.
4.The returns on E-mini can explain 6%-8% of the variance of forecasting errors of the returns on Taiwan index spot market and 8%-10% of that of the index futures market.
5.The returns on E-mini cause positive responses of the returns on the Taiwan spot and futures returns within 45 minutes (3 periods).
In summary, the E-mini, as well as the closing index of the European market, the U.S. stock index of the previous day and the immediate Asian market indices, provides insightful information for Taiwan intraday spot and futures prices. Investors may use the dynamic linkage between Taiwan and the U.S. E-mini to make intraday trading decisions.

Keywords: E-mini, Intraday, VECM, Granger causality, Variance decomposition, Impulse response
謝辭................................................................................................................i
摘要...............................................................................................................ii
Abstract........................................................................................................iv
目錄..............................................................................................................vi
表次............................................................................................................viii
圖次..............................................................................................................ix
第壹章 緒論...............................................................................................1
第一節 研究背景與動機...................................................................1
第二節 研究目的.............................................................................11
第三節 論文架構.............................................................................12
第貳章 文獻回顧.....................................................................................13
第一節 台美股市關聯性文獻.........................................................13
第二節 期貨與現貨領先落後關係文獻.........................................15
第三節 日內資料文獻.....................................................................17
第四節 E-mini相關文獻.................................................................19
第參章 研究方法.....................................................................................21
第一節 單根檢定.............................................................................21
第二節 向量自我迴歸模型.............................................................22
第三節 共整合檢定.........................................................................23
第四節 誤差修正模型.....................................................................25
第五節 Granger因果關係檢定.......................................................26
第六節 預測誤差變異數分解與衝擊反應函數.............................27
第肆章 實證結果分析.............................................................................28
第一節 實證資料說明.....................................................................28
第二節 基本統計性質.....................................................................29
第三節 單根檢定結果.....................................................................31
第四節 Johansen共整合檢定..........................................................32
第五節 誤差修正模型.....................................................................34
第伍章 結論與建議.................................................................................50
第一節 結論.....................................................................................50
第二節 建議與未來研究方向.........................................................51
參考文獻.....................................................................................................53
一、中文部分:
王冠閔、黃柏農,2004,「台灣股、匯市與美國股市關聯性探討」,台灣經濟預測與政策,34(2):31-72。
王凱立、李昀薇,2005,「台股指數現貨、期貨與選擇權市場交互動態關聯之探討」,2005年行為財務學理論與實證研討會。
王凱立、陳美玲,2002,「美國和台灣股票期現貨市場之動態關聯:一般化多變量GARCH模型的應用」,經濟論文,30(4):363-407。
邱建良、劉聰衡、紀嘉政,2000,「台灣股市與國際股市共移性之研究」,商管科技季刊,第一卷,第三期,263-285。
洪惠娟,2004,「S&P 500指數、期貨與ETF價格發現之研究」,淡江大學財務金融學系碩士論文。
徐清俊、吳明恆,2004,「股票市場動態關係之研究-以美、日、台為例」,玄奘管理學報,第一卷,第二期,1-24。
陳怡伶,2004,「台灣50 ETF與台灣加權股價指數現貨與台指期貨間的價格關聯性研究」,成功大學企業管理研究所碩士論文。
陳玲慧,2001,「台股指數現貨、台股指數期貨與摩根台股指數期貨關聯性之研究-向量自我迴歸模型之應用」,商管科技季刊,第二卷,第二期,123-137。
黃鴻元,2006,「台灣股價指數現貨、指數期貨與指數選擇權市場領先落後關係之研究」,雲林科技大學財務金融系碩士論文。
張宇涵,2005,「指數期貨價格與現貨價格之關聯性」,世新大學財務金融系碩士論文。
張哲郎,2005,「台灣股價指數現貨、期貨與台灣50 ETF價格關聯性研究」,朝陽科技大學財務金融系碩士論文。
張簡士煌,2005,「台灣股市與國際股市關聯性之研究」,朝陽科技大學企業管理系碩士論文。
楊育軒,2003,「台、美、日三國股價資訊傳遞之研究」,台北大學企業管理研究所碩士論文。
劉廷麟,2001,「台股指數期貨與摩根台股指數期貨價格發現能力之探討」,淡江大學財務金融學系碩士論文。
蔡坤助,2005,「台灣股、匯市與美國股市之連動關係:三元GJR
GARCH-X之應用」,義守大學財務金融學系碩士論文。
蔡佳欣,2006,「台灣股價指數現貨與期貨市場間日內報酬之波動率外溢效果」,中正大學財務金融所碩士論文。
鄭昕宜,2004,「價格傳遞與過度反應:台灣股票與期貨市場實證分
析」,朝陽科技大學財務金融系碩士論文。
鄭婉秀,2001,「國際股價指數期貨與現貨關聯性之研究」,淡江大學財務金融學系碩士論文。

二、英文部分:
Akaike, H. (1973), “Information Theory and an Extension of the Maximum Likelihood Principle,” Proceedings of 2nd International Symposium on Information Theory, 267-281.
Ates, A. and G. H. K. Wang (2002), “Competition, Fragmentation, and Complementarity: The Case of Equity Index Futures versus E-mini Equity Index Futures,” Futures Research Symposium, 2003, Shanghai.
Ates, A. and G. H. K. Wang (2005), “Information Transmission in Electronic Versus Open-Outcry Trading Systems: An Analysis of U.S. Equity Index Futures Markets,” The Journal of Futures Markets, 25, 679-715.
Chan, K., K. C. Chan, and G. A. Karolyi (1991), “Intraday Volatility in the Stock Index and Stock Index Futures Markets,” The Review of Financial Studies, 4, 657-684.
Chu, Q. C., W. G. Hsieh, and Y. Tse (1999), “Price Discovery on the S&P 500 Index Markets: An Analysis of Spot Index, Index Futures, and SPDRs,” International Review of Financial Analysis, 8, 21-34.
Dickey, D. A. and W. A. Fuller (1979), “Distribution of the Estimators for Autoregressive Time Series with a Unit Root,” Journal of the American Statistical Association, 74, 427-431.
Egert, B. and E. Kocenda (2005), “Contagion Across and Integration of Central and Eastern European Stock Markets: Evidence from Intraday Data,” William Davidson Institute Working Paper, Number 798.
Egert, B. and E. Kocenda (2007), “Time-Varying Comovements in Developed and Emerging European Stock Markets: Evidence from Intraday Data,” William Davidson Institute Working Paper, Number 861.
Engle, R. F. and C. W. J. Granger (1987), “Co-integration and Error Correction Representation Estimation and Testing,” Econometrica, 55, 251-276.
Eun, C. S. and S. Shim (1989), “International Transmission of Stock Market Movements,” Journal of Financial and Quantitative Analysis, 24, 241-256.
Fleming, J., B. Ostdiek, and R. E. Whaley (1996), “Trading Costs and the Relative Rate if Price Discovery in Stock Index Futures Markets,” The Journal of Futures Markets, 15, 457-488.
Granger, C. W. J. (1969), “Investigating Causal Relations by Econometric Models and Cross-Spectral,” Econometrica, 37, 424-438.
Granger, C. W. J. (1983), “Co-integrated Variables and Error-Correcting Models,” Discussion Paper, University of California, San Diego, 83-13.
Granger, C. W. J. and P. Newbold (1974), “Spurious Regressions in Econometrics,” Journal of Econometrics, 26, 1045-1066.
Hasbrouck, J. (2003), “Intraday Price Formation in U.S. Equity Index Markets,” The Journal of Finance, 58, 2275-2399.
Johansen, S. (1991), “Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models,” Econometrica, 59, 1551-1580.
Kawaller, I. G., P. D. Koch, and T. W. Koch (1987), “The Temporal Price Relationship between S&P 500 Futures and the S&P 500 Index,” The Journal of Finance, 42(5), 1309-1329.
Liu, Y. A. and M. S. Pan (1997), “Mean and Volatility Spillover Effects in the U.S. and Pacific-Basin Stock Markets,” Multinational Finance Journal, 1997, 1, 47-62.
Schwarz, G. (1978), “Estimating the Dimension of a Model,” Annals of Statistics, 6, 461–464.
Shyy, G., V. Vijayraghavan, and S.Q. Brian (1996), “A Further Investigation of the Lead-Lag Relationship Between the Cash Market and Stock Index Futures Market with the Use of Bid/Ask Quotes: the Case of France,” The Journal of Futures Markets, 16, 405-420.
Sim, A. B. and R. Zurbreugg (1999), “Intertemporal Volatility and Price Interactions between Australian and Japanese Spot and Futures Stock Index Markets,” The Journal of Futures Markets, 19, 523-540.
Sims, C. A. (1980), “Macroeconomics and Reality,” Econometrica, 48, 1-48.
Stoll, H. R. and R. E. Whaley (1990), “The Dynamics of Stock Index and Stock Index Futures Returns,” The Journal of Financial and Quantitative Analysis, 25, 441-468.
Tse, Y., P. Bandyopadhyay, and Y. P. Shen (2006), “Intraday Price Discovery in the DJIA Index Markets,” Journal of Business Finance & Accounting, 33, 1572-1585.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top