跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:古忠傑
研究生(外文):Cheung-Chieh Ku
論文名稱:針對具乘積式雜訊Takagi-Sugeno模糊模型之被動模糊控制及其電力系統動態穩定度研究之應用
論文名稱(外文):Passive Fuzzy Control for Takagi-Sugeno Fuzzy Model with Multiplicative Noise and Applications to Power System Dynamic Stability Study
指導教授:黃培華黃培華引用關係張文哲張文哲引用關係
指導教授(外文):Pei-Hwa HuangWen-Jer Chang
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:200
中文關鍵詞:T-S模糊系統被動定理乘積式雜訊強健控制時間延遲觀測器設計
外文關鍵詞:T-S Fuzzy ModelPassivity TheoryMultiplicative NoiseRobust ControlTime-DelayObserver Design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:312
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,具乘積式雜訊之Takagi- Sugeno模糊模型用來表示所探討的非線性隨機電力系統。根據隨機建模方式,所考慮的T-S模糊模型之後件部是以Itô隨機微分方程式架構之。在考慮真實環境下操作,對於所控制系統,除了穩定性討論外,其性能要求亦是一重要的討論方向。針對此性能的要求,被動定理被用來探討外部雜訊對系統的影響。再者,針對系統之不確定性,強健性控制問題也同時被加以探討與研究。同時,我們亦提出時間延遲相關之穩定性法則,針對具有時間延遲之非線性隨機系統進行穩定性分析。此外,在狀態無法測量的情況下,模糊觀測器之設計問題也在本篇論文中加以探討。然而,由於能量傳遞的過程可能造成隨機行為的產生,進而導致電力系統成為一隨機系統,因此非線性隨機電力系統被用來證明本論文所提出設計方法有效性與可用性。基於所提出之穩定性法則,我們可以從模擬結果得知隨機電力系統透過所設計出之非線性控制器在均方根之觀念下是漸近穩定且滿足被動特性需求。
In this dissertation, the Takagi-Sugeno (T-S) fuzzy model with the multiplicative noises is used to represent the complex nonlinear stochastic system. According to stochastic modeling approach, the consequently part of concerned T-S fuzzy model is structured by Itô Stochastic Differential Equation (SDE). And for practical environment, the performance requirements are also important issues in control systems except for stability. For those issues, the effect of external disturbance on systems is discussed by passivity theory. Furthermore, the robust control problem is also investigated for the systems with uncertainties. Simultaneously, delay-dependent stability criterion is proposed for stabilizing the nonlinear stochastic systems with time-delay. Besides, under condition as unmeasurable states, a design problem for observer-based fuzzy controller is also discussed and investigated in this dissertation. Moreover, the nonlinear power systems may be leaded to be stochastic systems due to some potential stochastic behaviors during power transmissions. Thus, the stochastic power systems are provided for demonstrating the effectiveness and usefulness of proposed design method. Based on the proposed stability criteria, one can find that the stochastic power systems driven by fuzzy controller is asymptotically stable and passive in the mean square from simulation results.
Abstract I
Acronyms II
Nomenclature III
List of Tables V
List of Figures VI
Index of Chapters and Sections VIII

Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Review of Previous Works 5
1.3 Purpose and Contribution 9
1.4 Organization of this Dissertation 10

Chapter 2 Descriptions of Takagi-Sugeno Fuzzy Model of
Nonlinear Stochastic Systems 11
2.1 Introduction 11
2.2 Structure of Takagi-Sugeno Fuzzy Model with Multiplicative Noise 11
2.2.1. Takagi-Sugeno Fuzzy Modeling Approach 14
2.2.2. Description of Itô Stochastic Differential Equation 16
2.3 Nonlinear Stochastic Power Systems 20
2.3.1. Takagi-Sugeno Fuzzy Model with Multiplicative Noise
of Nonlinear Stochastic Single Synchronous Generator
Power System 21
2.3.2. Takagi-Sugeno Fuzzy Model with Multiplicative Noise of
Nonlinear Stochastic Three-Machines Interconnected
Power Systems 26
2.4 Summary 31

Chapter 3 Passive Fuzzy Control for Takagi-Sugeno Fuzzy Model with Multiplicative Noise 33
3.1 Introduction 33
3.2 Preliminaries and Problem Formulations 33
3.3 Passive fuzzy control for Takagi-Sugeno Fuzzy Model with Multiplicative Noise 37
3.4 Numerical Example 43
3.5 Summary 47

Chapter 4 Passive Fuzzy Control for Uncertain Takagi-Sugeno
Fuzzy Model with Multiplicative Noise 51
4.1 Introduction 51
4.2 Preliminaries and Problem Formulations 51
4.3 Passive fuzzy controller for Uncertain Takagi-Sugeno Fuzzy Model with Multiplicative Noise 55
4.4 Numerical Example 64
4.5 Summary 67

Chapter 5 Passive Fuzzy Control for Time-Delay Takagi-Sugeno
Fuzzy Model with Multiplicative Noise 70
5.1 Introduction 70
5.2 Preliminaries and Problem Formulations 70
5.3 Passive Fuzzy Control for Time-Delay Takagi-Sugeno
Fuzzy Model with Multiplicative Noise 74
5.4 Numerical Example 88
5.5 Summary 90

Chapter 6 Passive Fuzzy Control for Uncertain Time-Delay
Takagi-Sugeno Fuzzy Model with Multiplicative
Noise 95
6.1 Introduction 95
6.2 Preliminaries and Problem Formulations 96
6.3 Passive Fuzzy Control for Uncertain Time-Delay Takagi
-Sugeno Fuzzy Model with Multiplicative Noise 99
6.4 Numerical Example 121
6.5 Summary 124

Chapter 7 Observer-Based Passive Fuzzy Control for Uncertain
Time-Delay Takagi-Sugeno Fuzzy Model with
Multiplicative Noise 127
7.1 Introduction 127
7.2 Preliminaries and Problem Formulations 128
7.3 Observer-Based Passive Fuzzy Control for Uncertain Time
-Delay Takagi-Sugeno Fuzzy Model with Multiplicative
Noise 132
7.4 Numerical Example 149
7.5 Summary 155

Chapter 8 Conclusions and Suggestion of Future Works 158
8.1 Conclusions 158
8.2 Suggestion of Future Works 160

Appendix 161
Bibliography 177
Publications 184

[1] G. Eli, S. Uri, and Y. Isaac, Control and Estimation of State-Multiplicative Linear Systems, Springer, London, 2005.
[2] E. Allen, Modeling with Itô Stochastic Differential Equations, Springer, Dordrecht, 2007.
[3] B. K. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, New York, 2003.
[4] L. E. Ghaoui, “State-Feedback Control of Systems with Multiplicative Noise via Linear Matrix Inequalities,” Syst. & Control Letters, Vol. 24, No. 3, pp. 223-228, 1995.
[5] C. Y. Lu, J. S. H. Tsai, G. J. Jong, and T. J. Su, “An LMI-Based Approach for Robust Stabilization of Uncertain Stochastic Systems with Time-Varying delays,” IEEE Trans. Automatic Control, Vol. 48, No. 2, pp. 286-289, 2003.
[6] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1991.
[7] M. A. Rami and X. Y. Zhou, “Linear Matrix Inequalities, Riccati Equations, and Indefinite Stochastic Linear Quadratic Controls,” IEEE Trans. Automatic Control, Vol. 45, No. 6, pp. 1131-1143, 2000.
[8] Y. Niu, D. W C Ho, and J. Lam, “Robust Integral Sliding Mode Control for Stochastic Systems with Time-Varying Delay,” Automatica, Vol. 41, No. 5, pp. 873-880, 2005.
[9] S. Xu and T. Chen, “ Output Feedback Control for Uncertain Stochastic Systems with Time-Varying Delays,” Automatica, Vol. 40, No. 12, pp. 2091-2098, 2004.
[10] I. R. Petersen, “Robust Output Feedback Guaranteed Cost Control of Nonlinear Stochastic Uncertain Systems via An IQC Approach,” IEEE Trans. Automatic Control, Vol. 54, No. 6, pp. 1299-1304, 2009.
[11] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., New York, 2001.
[12] M. C. M. Teixeira and S. H. Żak, “Stabilizing Controller Design for Uncertain Nonlinear Systems Using Fuzzy Models,” IEEE Trans. Fuzzy Syst., Vol. 7, No. 2, pp. 133-142, 1999.
[13] W. J. Chang and S. M. Wu, “Continuous Fuzzy Controller Design Subject to Minimizing Control Input Energy with Output Variance Constraints,” European J. of Control, Vol. 11, No. 3, pp. 269-277, 2005.
[14] W. J. Chang, C. C. Ku, and W. Chang, “Fuzzy Control with Passivity Synthesis for Continuous Affine Takagi-Sugeno Fuzzy Systems,” Int. J. Intelligent Computing and Cyber., Vol. 2, No. 2, pp.386-408, 2009.
[15] W. J. Chang, C. C. Ku, P. H. Huang, and W. Chang, “Fuzzy Controller Design for Passive Continuous-Time Affine T-S Fuzzy Models with Relaxed Stability Conditions,” ISA Trans., Vol. 48, No. 3, pp. 295-303, 2009.
[16] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.
[17] W. J. Chang, W. Chang, and C. C. Ku, “ Fuzzy Control for Time-Delay Affine Takagi-Sugeno Fuzzy Models: An ILMI Approach,” J. of the Chinese Institute of Engineers, Vol. 32, No. 4, pp. 501-512, 2009.
[18] E. T. Jeung, J. H. Kim, and H. B. Park, “ -Output Feedback Controller Design for Linear Systems with Time-Varying Delayed State,” IEEE Trans. Automatic Control, Vol.43, No 7, pp. 971-974, 1998.
[19] X. Liu and Q. Zhang, “Approaches to Quadratic Stability Conditions and Control Design for T-S Fuzzy Systems,” IEEE Trans. Fuzzy Syst., Vol. 11, No. 6, pp. 830-839, 2003.
[20] E. Tian, D. Yue, and Y. Zhang, “Delay-Dependent Robust Control for T-S Fuzzy System with Interval Time-Varying Delay,” Fuzzy Sets and Syst., Vol. 160, No. 12, pp. 1708-1719, 2009.
[21] R. Lozano, B. Brogliato, O. Egeland, and B. Maschke, Dissipative Systems Analysis and Control Theory and Application, Springer, London, 2000.
[22] C. G. Li, H. B. Zhang, and X. F. Liao, “Passivity and Passification of Uncertain Fuzzy Systems,” IEE Proc. Circuits Devices Syst., Vol. 152, No. 6, pp.649-653, 2005.
[23] H. J. Uang, “On the Dissipativity of Nonlinear Systems: Fuzzy Control Approach,” Fuzzy Sets and Syst., Vol. 156, No. 2, pp.185-207, 2005.
[24] B. Chen, X. Liu, S. Tong, and C. Lin, “Guaranteed Cost Control of T-S Fuzzy Systems with State and Input Delays,” Fuzzy Sets and Syst., Vol. 158, No. 20, pp. 2251-2267, 2007.
[25] B. Chen, X. Liu C. Lin, and K. Liu, “Robust Control of Takagi-Sugeno Fuzzy Systems with State and Input Time Delays,” Fuzzy Sets and Syst., Vol. 160, No. 4, pp. 403-422, 2009.
[26] C. H. Lien, “Delay-Dependent and Delay-Independent Guaranteed Cost Control for Uncertain Neutral Systems with Time-Varying Delays via LMI Approach,” Chaos, Solitons and Fractals, Vol. 33, No. 3, pp. 1017-1027, 2007.
[27] Y. Y. Cao and P. M. Frank, “Analysis and Synthesis of Nonlinear Time Delay Systems via Fuzzy Control Approach,” IEEE Trans. Fuzzy Syst., Vol. 8, No. 2, pp. 200-211, 2000.
[28] X. Jiang and Q. L. Han, “Delay-Dependent Robust Stability for Uncertain Linear Systems with Interval Time-Varying Delay,” Automatica, Vol. 42, No. 6, pp. 1059-1065, 2006.
[29] C. H. Lien and K. W. Yu, “Robust Control for Takagi-Sugeno Fuzzy Systems with Time Varying State and Input Delays,” Chaos, Solitons and Fractals, Vol. 35, No. 5, pp. 1003-1008, 2008.
[30] D. W. C. Ho and Y. Niu, “Robust Fuzzy Design for Nonlinear Uncertain Stochastic Systems via Sliding-Mode Control,” IEEE Trans. Fuzzy Syst., Vol. 15, No. 3, pp. 350-358, 2007.
[31] Z. Wang, D. W. C. Ho, and X. Liu, “A Note on Robust Stability of Uncertain Stochastic Fuzzy Systems with Time-Delays,” IEEE Trans. Syst., Man and Cyber. -Part A: Syst. and Humans, Vol. 34, No. 4, pp. 570-576, 2004.
[32] C. S. Tseng, “Robust Fuzzy Filtering Design for A Class of Nonlinear Stochastic Systems,” IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 261-274, 2007.
[33] H. Huang and D. W. C. Ho, “Delay-Dependent Robust Control of Uncertain Stochastic Fuzzy Systems with Time-Varying Delay,” IET Control Theory Applications, Vol. 1, No. 4, pp. 1075-1085, 2007.
[34] B. Zhang, S. Xu, G. Zong and Y. Zou, “Delay-Dependent Stabilization for Stochastic Fuzzy Systems with Time Delays,” Fuzzy Sets and Syst., Vol. 158, No. 20, pp. 2238-2250, 2007.
[35] H. Zhang, Y. Wang, and D. Liu, “Delay-Dependent Guaranteed Cost Control for Uncertain Stochastic Fuzzy Systems with Multiple Time Delays,” IEEE Trans. Syst., Man and Cyber.-Part B: Cyber., Vol. 38, No. 1, pp. 126-140, 2008.
[36] L. Hu and A. Tang, “Fuzzy Model-Based Control of Nonlinear Stochastic Systems with Time-Delay,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 71, No. 12, pp. e2855-e2865, 2009.
[37] W. Zhang, B. S. Chen, and C. S. Tseng, “Robust Filtering for Nonlinear Stochastic Systems,” IEEE Trans. Signal Processing, Vol. 53, No. 2, pp. 589-598, 2005.
[38] C. S. Chiu and T. S. Chiang, “Robust Output Regulation of T-S Fuzzy Systems with Multiple Time-Varying State and Input Delays,” IEEE Trans. Fuzzy Syst., Vol. 17, No. 4, pp. 962-975, 2009.
[39] C. Peng and Y. C. Tian, “Delay-Dependent Robust Stability Criteria for Uncertain Systems with Interval Time-Varying Delay,” J. Comp. and Applied Mathematics, Vol. 214, No. 2, pp. 80-494, 2008.
[40] C. Peng, Y. C. Tian, and E. Tian, “Improved Delay-Dependent Robust Stabilization Conditions of Uncertain T-S Fuzzy Systems with Time-Varying Delay,” Fuzzy Sets and Syst., Vol. 159, No. 20, pp. 2713-2729, 2008.
[41] B. Chen and X. Liu, “Fuzzy Guaranteed Cost Control for Nonlinear Systems with Time-Varying Delay,” IEEE Trans. Fuzzy Syst., vol. 13, no. 2, pp. 238-249, 2005.
[42] S. Tong and H. H. Li, “Observer-Based Robust Fuzzy Control of Nonlinear Systems with Parametric Uncertainties,” Fuzzy Set and Syst., Vol. 131, No. 2, pp. 165-184, 2002.
[43] E. K. Boukas, “Observer-based Controller for Stochastic Fuzzy Systems,” Proc. 45th IEEE Conf. Decision & Cont., pp. 4133-4138, San Diego, USA., 2006.
[44] Y. Guo, D. J. Hill, and Y. Wang, “Global Transient Stability and Voltage Regulation for Power Systems,” IEEE Trans. Power Syst., Vol. 16, No. 4, pp.678-688, 2001.
[45] A. R. Bergen, Power System Analysis, Englewood Cliffs, HJ: Prentice-Hall, 1986.
[46] P. Kundur, Power Systems Stability and Control, Mc Graw-Hill, New York, 1994.
[47] V. H. C. Alcalde, A. A. Fernandes, and L. R. Soares Jr., “Electrical Power Systems Stabilization through Series Compensation by Using Variable Structure Control,” Proc. Intern. Workshop on Variable Structure Syst., pp. 98-103, 2006.
[48] D. D. Siljak, Large-Scale Dynamic Systems-Stability and Structure, Amsterdam, Netherlands: North-Holland, 1978.
[49] Q. Lu and Y. Sun, “Nonlinear Stabilizing Control of Multimachine Systems,” IEEE Trans. Power Syst., Vol. 11, No. 1, pp. 236-241, 1989.
[50] J. W. Chapman, M. D. Ilic, and C. A. King, “Stabilizing A Multimachine Power System via Decentralized Feedback Linearizing Excitation Control,” IEEE Trans. Power Syst., Vol. 8, No. 1, pp. 830-839, 1993.
[51] K. Uhlen, B. A. Foss, and O. B. Giøsæter, “Robust Control and Analysis of a Wind-Diesel Hybrid Power Plant,” IEEE Trans. Energy Conversion, Vol. 9, No. 4, pp. 701-708, 1994.
[52] B. H. Cho and H. C. No, “Design of Stability-Guaranteed Fuzzy Logic Control for Nuclear Steam Generators,” IEEE Trans. Nuclear Science, Vol. 43, No. 2, pp. 716-730, 1996.
[53] L. L. Feris, Wind Energy Conversion System, New Jersy, Prentice Hall, 1990.
[54] F. Zheng, Q. G. Wang, T. H. Lee, and X. Huang, “Robust PI Controller Design for Nonlinear Systems via Fuzzy Modeling Approach,” IEEE Trans. Syst., Man and Cyber.-Part A: Syst. and Humans, Vol. 31, No. 6, pp. 666-675, 2001.
[55] B. S. Chen, C. S. Tseng, and H. J. Uang, “Fuzzy Differential Games for Nonlinear Stochastic Systems: Suboptimal Approach,” IEEE Trans. Fuzzy Syst., Vol. 10, No. 2, pp. 222-233, 2002.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top