參考文獻
1.Zeng, S.; Yong, K.-T.; Roy, I.; Dinh, X.-Q.; Yu, X.; Luan, F., A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011, 6 (3), 491-506.
2.Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N., Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters 1987, 16 (2), 405-408.
3.Kuwauchi, Y.; Yoshida, H.; Akita, T.; Haruta, M.; Takeda, S., Intrinsic Catalytic Structure of Gold Nanoparticles Supported on TiO2. Angewandte Chemie International Edition 2012, 51 (31), 7729-7733.
4.Hayashi, T.; Tanaka, K.; Haruta, M., Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen. Journal of Catalysis 1998, 178 (2), 566-575.
5.Link, S.; El-Sayed, M. A., Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of Physical Chemistry B 1999, 103 (21), 4212-4217.
6.Gole, A.; Murphy, C. J., Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed. Chemistry of Materials 2004, 16 (19), 3633-3640.
7.Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. The Journal of Physical Chemistry B 2001, 105 (19), 4065-4067.
8.Huang, C.-J.; Wang, Y.-H.; Chiu, P.-H.; Shih, M.-C.; Meen, T.-H., Electrochemical synthesis of gold nanocubes. Materials Letters 2006, 60 (15), 1896-1900.
9.Nehl, C. L.; Liao, H.; Hafner, J. H., Optical Properties of Star-Shaped Gold Nanoparticles. Nano Letters 2006, 6 (4), 683-688.
10.Huang, C.-J.; Chiu, P.-H.; Wang, Y.-H.; Yang, C.-F., Synthesis of the gold nanodumbbells by electrochemical method. Journal of Colloid and Interface Science 2006, 303 (2), 430-436.
11.Wu, H.-Y.; Chu, H.-C.; Kuo, T.-J.; Kuo, C.-L.; Huang, M. H., Seed-Mediated Synthesis of High Aspect Ratio Gold Nanorods with Nitric Acid. Chemistry of Materials 2005, 17 (25), 6447-6451.
12.Nikoobakht, B.; El-Sayed, M. A., Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials 2003, 15 (10), 1957-1962.
13.Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P., Metal nanoparticles and their assemblies. Chemical Society Reviews 2000, 29 (1), 27-35.
14.Guzman, J.; Carrettin, S.; Corma, A., Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2. Journal of the American Chemical Society 2005, 127 (10), 3286-3287.
15.Abad, A.; Corma, A.; Garcia, H., Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism. Chemistry (Weinheim an der Bergstrasse, Germany) 2008, 14 (1), 212-22.
16.Okumura, M.; Fujitani, T.; Huang, J.; Ishida, T., A Career in Catalysis: Masatake Haruta. ACS Catalysis 2015, 5 (8), 4699-4707.
17.Molina, L. M.; Hammer, B., Some recent theoretical advances in the understanding of the catalytic activity of Au. Applied Catalysis A: General 2005, 291 (1–2), 21-31.
18.Remediakis, I. N.; Lopez, N.; Nørskov, J. K., CO oxidation on gold nanoparticles: Theoretical studies. Applied Catalysis A: General 2005, 291 (1–2), 13-20.
19.Skrabalak, S. E.; Wiley, B. J.; Kim, M.; Formo, E. V.; Xia, Y., On the Polyol Synthesis of Silver Nanostructures: Glycolaldehyde as a Reducing Agent. Nano Letters 2008, 8 (7), 2077-2081.
20.劉庭, 銀奈米立方體的合成影響因子及表面性質. 碩士論文 國立中正大學化學暨生物化學所 2015.21.Hill, G.; Holman, J., Chemistry in Context. Nelson Thornes; UK, 2000
22.Huang, S.; Mau, A. W. H., Selective Growth of Aligned Carbon Nanotubes on a Silver-Patterned Substrate by the Silver Mirror Reaction. The Journal of Physical Chemistry B 2003, 107 (15), 3455-3458.
23.Ashford, S. W.; Grega, K. C., Oxidative Cleavage of 1,3-Dicarbonyls to Carboxylic Acids with Oxone. The Journal of Organic Chemistry 2001, 66 (4), 1523-1524.
24.Gat, Y.; Sheves, M., A mechanism for controlling the pKa of the retinal protonated Schiff base in retinal proteins. A study with model compounds. Journal of the American Chemical Society 1993, 115 (9), 3772-3773.
25.Basson, R. A.; du Plessis, T. A., A spectrophotometric method for the micro determination of glycolaldehyde. Analyst 1967, 92 (1096), 463-465.
26.Siekkinen, A. R.; McLellan, J. M.; Chen, J.; Xia, Y., Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chemical Physics Letters 2006, 432 (4–6), 491-496.
27.Huang, C.-C.; Huang, C.-H.; Kuo, I.-T.; Chau, L.-K.; Yang, T.-S., Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 409, 61-68.
28.Tanev, P. T.; Pinnavaia, T. J., Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties. Chemistry of Materials 1996, 8 (8), 2068-2079.
29.Banks, T.; Vaughn, C.; Marshall, L. M., Spectrophotometric Determination of Glyoxal Bis(2,4-dinitrophenylhydrazone), Derivative of Glycolaldehyde. Analytical Chemistry 1955, 27 (8), 1348-1349.
30.Kelley, A. M., Condensed-phase Molecular Spectroscopy and Photophysics. John Wiley & Sons: 2012.
31.Gibson, R. E.; Kincaid, J. F., The Influence of Temperature and Pressure on the Volume and Refractive Index of Benzene. Journal of the American Chemical Society 1938, 60 (3), 511-518.
32.Rheims, J.; Köser, J.; Wriedt, T., Refractive-index measurements in the near-IR using an Abbe refractometer. Measurement Science and Technology 1997, 8 (6), 601.
33.Aminabhavi, T. M.; Phayde, H. T. S.; Khinnavar, R. S.; Gopalakrishna, B.; Hansen, K. C., Densities, refractive indices, speeds of sound, and shear viscosities of diethylene glycol dimethyl ether with ethyl acetate, methyl benzoate, ethyl benzoate, and diethyl succinate in the temperature range from 298.15 to 318.15 K. Journal of Chemical & Engineering Data 1994, 39 (2), 251-260.
34.Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B., Using Binary Surfactant Mixtures To Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods. Nano Letters 2013, 13 (2), 765-771.
35.黃家琪, 以金奈米棒及金奈米球為表面增強拉曼散射基材之生物檢測應用. 博士論文 國立中正大學化學暨生物化學所 2012.36.Gorelikov, I.; Matsuura, N., Single-Step Coating of Mesoporous Silica on Cetyltrimethyl Ammonium Bromide-Capped Nanoparticles. Nano Letters 2008, 8 (1), 369-373.
37.Borisova, D.; Möhwald, H.; Shchukin, D. G., Mesoporous Silica Nanoparticles for Active Corrosion Protection. ACS Nano 2011, 5 (3), 1939-1946.
38.Link, S.; Mohamed, M. B.; El-Sayed, M. A., Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. The Journal of Physical Chemistry B 1999, 103 (16), 3073-3077.
39.Wells, C. F., The spectra of 2,4-Dinitrophenylhydrazone anions and the determination of carbonyl compounds in dilute aqueous solution. Tetrahedron 1966, 22 (8), 2685-2693.
40.Lu, D.-l.; Domen, K.; Tanaka, K.-i., Electrodeposited Au−Fe, Au−Ni, and Au−Co Alloy Nanoparticles from Aqueous Electrolytes. Langmuir 2002, 18 (8), 3226-3232.
41.Wu, Z.; Zeng, Q.; Wang, H., Structural controls of AuNR@mSiO2: tuning of the SPR, and manipulation of the silica shell thickness and structure. Journal of Materials Chemistry C 2016, 4 (13), 2614-2620.
42.Deng, T.-S.; van der Hoeven, J. E. S.; Yalcin, A. O.; Zandbergen, H. W.; van Huis, M. A.; van Blaaderen, A., Oxidative Etching and Metal Overgrowth of Gold Nanorods within Mesoporous Silica Shells. Chemistry of Materials 2015, 27 (20), 7196-7203.
43.Tsung, C.-K.; Kou, X.; Shi, Q.; Zhang, J.; Yeung, M. H.; Wang, J.; Stucky, G. D., Selective Shortening of Single-Crystalline Gold Nanorods by Mild Oxidation. Journal of the American Chemical Society 2006, 128 (16), 5352-5353.