跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬立孫
研究生(外文):Marison Sudianto Manalu
論文名稱(外文):Effects of the Peptide Bacitracin and Calcium on Phospholipids Membrane Molecular Dynamics Studied byFast-Field-Cycling NMR Relaxometry
指導教授:黃聖言
指導教授(外文):Dennis W. Hwang
口試委員:楊子萱
口試委員(外文):Yang, Tzyy-Schiuan
口試日期:2017-01-13
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:57
中文關鍵詞:變場式核磁共振研究
外文關鍵詞:Fast-Field-Cycling NMR Relaxometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Biological membranes mostly composed of phospholipid molecules and proteins form a barrier between intra and extra-cellular environments and be able to control the material enters and exit the cell. Both in vivo and in vitro membrane destabilization can usually be induced by external agents such as bio molecules (i.e., proteins and peptides).
Fast field cycling nuclear magnetic resonance relaxometry can provide valuable information because of it is sensitivity to dynamic process that occur over a broad time scale. Recorded the data for the large unilamellar liposome which compose of POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) with addition of bacitracin and Ca2+. By analysis of the data recorded, the result shown that the influence of the bacitracin depends on its concentration. Bacitracin mainly affected the order fluctuation of the membrane, diffusional motion and rotational correlation time liposome. Moreover, the P/L ratio with higher concentration caused weaker surface charge and less shielding effect of the liposome.

Key word : NMRD, bacitracin, phospholipid membrane.

Contents
Abstract……………………………………………………………………...………..…i
Contents ………………………………………………………………………..…….…ii
List of Figures………………………………………………………………….……….iv

List of Tables ………………………………………………………………….……….v

Abbreviation list ……………………………………………………………….……….vi

Chapter 1 Introduction ……………………………………………………………….....1
1-1 Lipid bilayer ………………………………………………………………….……..1

1-2 Liposome …………………………………………………………………………...2

1-2-1Liposome Carriers of Different Types ………………………………….…….5

Chapter 2 Theory and Studies ……………………………………………………….….8
2-1 Preparation of Lipid For Hydration ………………………………………………..8
2-2-1 Antimicrobial Peptides (AMPs) ……………………………………………...9
2-1-2 Structure and Major Activities of AMPs …………………………….……….11
2-1-3 Bacitracin ……………………………………………………………….……14
2-1-4 Bloch Equation ………………………………………………………….…...17
2-1-5 Relaxation ……………………………………………………………….…...18
2-1-5-1 Spin Lattice Relaxation Mechanism ……………………………………….18
2-1-5-2 Spin-Spin Relaxation Time Measurement.……………………….…..……21
2-1-5-2-1 Relaxation Models For Biomembranes …………………….………..….21
2-1-6 Flourescence Spectroscopy………………………………………..………....23

2-1-7 Dynamic Light Scattering (DLS) ……………………………………….…....27
2-1-8 CD (Spectrum) ……………………………………………….…………..…..28
Chapter 3 Experiment …………………………………………………….………….….33
3-1 Experimental Chemicals ……………………………………….…………………...33
3-2 Method ……………………………………………………….……………………..35
3-2-1 Sample Preparation………………………………………………….…...35

3-2-2 Experimental Conditions ………………..…………………………..…..35
3-2-3 Molecular Calculation of Phospholipid on The Surface………………..36
3-3-2 Fluorescence Spectrometry…………………………………..…………..37
3-3 Experimental Section ……………………………………….……………….…...…37
3-3-1 CD (Circular Dichroism)…………………………………………………….…..38

3-4 Nuclear Magnetic Resonance ………………………………..……………..….…..39
3-4-1 FFC- NMR ………………………………………………………………….....….39
Chapter 4 Experimental result and discussion ……………………………….…..…….43
4-1 FFC-NMR result ……………………………………………………….…...….……43
4-1-1Comparison of NMRD profiles in each sample ……………..……..…….43
4-1-2 Order fluctuation of liposome …………………….………….………….47
4-1-3 Translational diffusion of lipids molecule ………..……….……….…….48
4-1-4 Rotational correlation time of liposome …………..………..…….………49
4-2 Fluorescence Spectrometry……………………………….…………….…….…....51
4-2-1 Calcein Leakage Assay Result ……………………….………………….……..…51
4-3 CD (Spectrum) …………………………………………………….………….….….52
4-3-1 Determination of Secondary Structure of Bacitracin ………...…….……..…..52
Chapter 5 Summary and prospects …………………………….………………….........54
5-1 Summary . ………………………………………….………….………….…….…...54
5-2 Prospects ………………………………………………………….………………....54
References ……………………………………………………………….….…………..55


1.Alberts, B.; Johnson, A.; Lewis, J.; Walter, P.; Raff, M.; Roberts, K., Molecular Biology of the Cell 4th Edition: International Student Edition. Routledge: 2002.
2.Berg, J., JL; Stryer, L., Biochemistry. WH Freeman and Company: New York: 2002.
3.Bangham, A. D.; Horne, R., Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of molecular biology 1964, 8 (5), 660IN2-668IN10.
4.Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery 2005, 4 (2), 145-160.
5.Dua, J.; Rana, A.; Bhandari, A., Liposome: methods of preparation and applications. Int J Pharm Stud Res 2012, 3, 14-20.
6.Vyas, S. P.; Khar, R. K., Targeted & controlled drug delivery: Novel carrier systems. CBS publishers & distributors: 2004.
7.Bangham, A.; Hill, M.; Miller, N., Preparation and use of liposomes as models of biological membranes. In Methods in membrane biology, Springer: 1974; pp 1-68.
8.Hofheinz, R.-D.; Gnad-Vogt, S. U.; Beyer, U.; Hochhaus, A., Liposomal encapsulated anti-cancer drugs. Anti-cancer drugs 2005, 16 (7), 691-707.
9.Kulkarni, S.; Betageri, G.; Singh, M., Factors affecting microencapsulation of drugs in liposomes. Journal of microencapsulation 1995, 12 (3), 229-246.
10.Koudelka, Š.; Mašek, J.; Neuzil, J.; Turánek, J., Lyophilised liposome‐based formulations of α‐tocopheryl succinate: Preparation and physico‐chemical characterisation. Journal of pharmaceutical sciences 2010, 99 (5), 2434-2443.
11.Kobayashi, T.; Tsukagoshi, S.; Sakurai, Y., Enhancement of the cancer chemotherapeutic effect of cytosine arabinoside entrapped in liposomes on mouse leukemia L-1210. Gann= Gan 1975, 66 (6), 719-720.
12.Mayhew, E.; Papahadjopoulos, D.; Rustum, Y.; Dave, C., Inhibition of tumor cell growth in vitro and in vivo by 1-β-D-arabinofuranosylcytosine entrapped within phospholipid vesicles. Cancer research 1976, 36 (12), 4406-4411.
13.Immordino, M. L.; Dosio, F.; Cattel, L., Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. International journal of nanomedicine 2006, 1 (3), 297.
14.Bangham, A. D., Surrogate cells or Trojan horses. The discovery of liposomes. BioEssays 1995, 17 (12), 1081-1088.
15.Brown, K. L.; Hancock, R. E., Cationic host defense (antimicrobial) peptides. Current opinion in immunology 2006, 18 (1), 24-30.
16.OHTANI, K.; OKADA, T.; YOSHIZUMI, H.; KAGAMIYAMA, H., Complete primary structures of two subunits of purothionin A, a lethal protein for brewer's yeast from wheat flour. Journal of biochemistry 1977, 82 (3), 753-767.
17.Conlon, J. M.; Sonnevend, A., Antimicrobial peptides in frog skin secretions. Antimicrobial Peptides: Methods and Protocols 2010, 3-14.
18.Radek, K.; Gallo, R. In Antimicrobial peptides: natural effectors of the innate immune system, Seminars in immunopathology, Springer: 2007; pp 27-43.
19.Peters, B. M.; Shirtliff, M. E.; Jabra-Rizk, M. A., Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 2010, 6 (10), e1001067.
20.Leippe, M., Antimicrobial and cytolytic polypeptides of amoeboid protozoa-effector molecules of primitive phagocytes. Developmental & Comparative Immunology 1999, 23 (4), 267-279.
21.Ma, Y.; Liu, C.; Liu, X.; Wu, J.; Yang, H.; Wang, Y.; Li, J.; Yu, H.; Lai, R., Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata. Genomics 2010, 95 (1), 66-71.
22.Aumelas, A.; Mangoni, M.; Roumestand, C.; Chiche, L.; Despaux, E.; Grassy, G.; Calas, B.; Chavanieu, A., Synthesis and Solution Structure of the Antimicrobial Peptide Protegrin‐1. European Journal of Biochemistry 1996, 237 (3), 575-583.
23.Powers, J.-P. S.; Hancock, R. E., The relationship between peptide structure and antibacterial activity. Peptides 2003, 24 (11), 1681-1691.
24.Huang, Y.; Huang, J.; Chen, Y., Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein & cell 2010, 1 (2), 143-152.
25.McManus, A. M.; Dawson, N. F.; Wade, J. D.; Carrington, L. E.; Winzor, D. J.; Craik, D. J., Three-dimensional structure of RK-1: a novel α-defensin peptide. Biochemistry 2000, 39 (51), 15757-15764.
26.Jenssen, H.; Hamill, P.; Hancock, R. E., Peptide antimicrobial agents. Clinical microbiology reviews 2006, 19 (3), 491-511.
27.Piers, K. L.; Brown, M. H.; Hancock, R. E., Recombinant DNA procedures for producing small antimicrobial cationic peptides in bacteria. Gene 1993, 134 (1), 7-13.
28.Costa, S.; Almeida, A.; Castro, A.; Domingues, L., Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: the novel Fh8 system. Recombinant protein expression in microbial systems 2014, 24.
29.(a) Bader, M. W.; Sanowar, S.; Daley, M. E.; Schneider, A. R.; Cho, U.; Xu, W.; Klevit, R. E.; Le Moual, H.; Miller, S. I., Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005, 122 (3), 461-472; (b) Marr, A. K.; Gooderham, W. J.; Hancock, R. E., Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Current opinion in pharmacology 2006, 6 (5), 468-472.
30.Phoenix, D. A.; Dennison, S. R.; Harris, F., Antimicrobial peptides. John Wiley & Sons: 2012.
31.Kirby, A. J., The lysozyme mechanism sorted-after 50 years. nature structural biology 2001, 8 (9), 737-738.
32.Johnson, B. A.; Anker, H.; Meleney, F. L., Bacitracin: a new antibiotic produced by a member of the B. subtilis group. Science 1945, 102 (2650), 376-377.
33.Katz, B. E.; Fisher, A. A., Bacitracin: a unique topical antibiotic sensitizer. Journal of the American Academy of Dermatology 1987, 17 (6), 1016-1024.
34.MacIver, R. H.; Stewart, R.; Frederiksen, J. W.; Fullerton, D. A.; Horvath, K. A. In Topical application of bacitracin ointment is associated with decreased risk of mediastinitis after median sternotomy, The heart surgery forum, 2005; pp E750-3.
35.Flickinger, M.; Perlman, D., Application of oxygen-enriched aeration in the production of bacitracin by Bacillus licheniformis. Antimicrobial agents and chemotherapy 1979, 15 (2), 282-293.
36.Brewer, G.; Florey, K., Anal. Profiles Drug Subst. 9, 1− 69.[CAS] Bacitracin Brewer, Glenn A. Analytical profiles of drug substances 1980, 9, 1-69.
37.Selzer, G., Heavy metals in antibiotics. Antibiotics & chemotherapy (Northfield, Ill.) 1956, 6 (8), 498-499.
38.Levitt, M. H., Spin dynamics: basics of nuclear magnetic resonance. John Wiley & Sons: 2001.
39.Meledandri, C. J.; Perlo, J.; Farrher, E.; Brougham, D. F.; Anoardo, E., Interpretation of Molecular Dynamics on Different Time Scales in Unilamellar Vesicles Using Field-Cycling NMR Relaxometry. The Journal of Physical Chemistry B 2009, 113 (47), 15532-15540.
40.Halle, B., Theory of spin relaxation by diffusion on curved surfaces. The Journal of chemical physics 1991, 94 (4), 3150-3168.
41.Herschel, J. F. W., 'Aμ́oρΦωτα No. I. On a Case of Superficial Colour Presented by a Homogeneous Liquid Internally Colourless. Philosophical Transactions of the Royal Society of London 1845, 143-145.
42.O'Reilly, J. E., Fluorescence experiments with quinine. J. Chem. Educ 1975, 52 (9), 610.
43.Instruments, M., Zetasizer nano series user manual. Worcestershire: Malvern Instruments Ltd 2004.
44. Holzwarth, G.; Doty, P., The ultraviolet circular dichroism of polypeptides1. Journal of the American Chemical Society 1965, 87 (2), 218-228; (b) Greenfield, N. J.; Fasman, G. D., Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 1969, 8 (10), 4108-4116.
45.Venyaminov, S. Y.; Baikalov, I.; Shen, Z. M.; Wu, C.-S. C.; Yang, J., Circular dichroic analysis of denatured proteins: inclusion of denatured proteins in the reference set. Analytical biochemistry 1993, 214 (1), 17-24.
46.Tifany, M. L.; Krimm, S., Effwct of temperature on the circular dichroism spectra of polypeptides in the extended state. Biopolymers 1972, 11 (11), 2309-2316.
47.Pelton, J. T.; McLean, L. R., Spectroscopic methods for analysis of protein secondary structure. Analytical biochemistry 2000, 277 (2), 167-176.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top