|
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions, National Bureau of Standards, 1964.
[2] E.L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, SIAM Publications, Philadelphia, 2003.
[3] S.L. Chang, C.S. Chien, “Adaptive continuation algorithms for computing en- ergy levels of rotating Bose-Einstein condensate, Comput. Phys. Commun. (2007) 177: 707-719.
[4] D. C. Dzeng and W.W. Lin, “Homotopy continuation method for the numerical solutions of generalised symmetric eigenvalue problems, J. Austral. Math. Soc. Ser. (1991) 32: 437-456.
[5] H. Han, Z. Huang, and R.B. Kellogg, “A tailored finite point method and a problem of P. Hemker, Proceedings of the International Conference on Boundary and Interior Layers - Computational and Asymptotic Methods, Limerick, July 2008.
[6] H. Han, Z. Huang, and R.B. Kellogg, “A tailored finite point method for a singular perturbation problem on an unbounded domain, J. Sci. Comput. (2008) 36: 243-261.
[7] H. Han and Z. Huang, “Tailored finite point method for a singular perturbation problem with variable coefficients in two dimensions, J. Sci. Comput., (2009) 41: 200-220.
[8] H. Han and Z. Huang, “A tailored finite point method for the Helmholtz equation with high wave numbers in heterogeneous mediun, J. Sci. Cumput. Math. (2008) 26: 728-739
[9] Hans D. Mittelmann, “A Pseudo-Arclength Continuation Method for nonlinear eigenvalue problems, SIAM. J. Numer. Anal. (1986) 23:1007-1016.
[10] Y. Shih, R.B. Kellogg, and P. Tsai, “A Tailored Finite Point Method for Convection-Diffusion-Reaction Problems, J. Sci. Comput. (2010) 43: 239-260.
[11] Y. Shih, R.B. Kellogg, and Y. Chang, “Characteriatic Tailored Finite Point Method for Convection-Dominated Convection-Diffusion-Reaction Problems, J. Sci. Compu. (2011) 47: 198-215.
[12] A. Tveito and R. Wathen, Introduction to Partial Differential Equations, Springer-Verlag, New York, 1998.
|