跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊慶文
研究生(外文):Cing-Wen Yang
論文名稱:鋰電池應用之高效率雙模調變互補式金氧半切換型降壓穩壓器研製
論文名稱(外文):Development of a High Efficiency Dual-Mode CMOS Switching Buck Regulator for Lithium Battery Applications
指導教授:王鴻猷
指導教授(外文):Hung-Yu Wang
口試委員:沈志隆吳松茂王陳肇王鴻猷
口試委員(外文):Chih-Lung ShenSung-Mao WuChen-Chao WangHung-Yu Wang
口試日期:2014-06-10
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:118
中文關鍵詞:鋰電池雙模調變脈衝寬度調變脈衝頻率調變
外文關鍵詞:lithium batterydual-mode modulationpulse width modulationpulse frequency modulation
相關次數:
  • 被引用被引用:6
  • 點閱點閱:557
  • 評分評分:
  • 下載下載:160
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個應用於鋰電池之高效率雙模調變CMOS切換型降壓穩壓器,可輕操作在寬的負載範圍下並維持高轉換效率。此雙模調變切換式穩壓器將視負載情況而選擇系統操作在脈衝寬度調變或是脈衝頻率調變模式,當驅動重載情況時穩壓器操作於脈衝寬度調變模式,當應用於驅動輕載時則切換穩壓器使操作於脈衝頻率調變模式,依模擬結果選擇150mA為輕重載的分界點,並設計穩壓器會自動偵測及切換調變模式。我們使用TSMC 0.35μm 2P4M 3.3V/5V Mixed Signal CMOS 製程來實現電路,並以系統性的設計方式,在系統層次、電路功能層次、電晶體層次,分別使用MATLAB、SIMPLIS與HSPICE進行各層級的模擬,本設計中包括軟啟動電路與零電流偵測電路,以避免電路啟動時產生過大的切換電流造成晶片燒毀及避免電感電流逆向導通所造成的功率損失。此穩壓器的設計是使用鋰電池輸入電壓2.7~4.2V,模擬結果顯示,輸出電壓可穩定在1.78~1.84V之間,可驅動負載電流在10m~600mA之間並維持70%的轉換效率以上,此穩壓器之功率轉換效率最高可達到96.6%。
A high-efficiency dual-mode CMOS switching buck regulator for lithium battery applications is presented in this thesis. The designed regulator can attain high power conversion efficiency for both light and heavy loads. According to the system loading condition, either pulse width modulation (PWM) mode or pulse frequency modulation (PFM) mode will be chosen. The regulator operates in PWM mode for heavy load current and PFM mode for light load current. According to simulation results, we choose 150mA as a demarcation point of light load and heavy load. According to load current, the system will automatically operated in pulse width modulation mode or pulse frequency modulation mode. This regulator IC is realized in the TSMC 0.35μm 2P4M 3.3V/5V mixed-signal CMOS technology. A systematic design flow, including system level, circuit level and transistor level is presented. The MATLAB, SIMPLIS and HSPICE design tools are used for the simulations of different level designs. A soft-start circuit and a zero current detection circuit are added to avoid the excess large switching current at the start-up to damage the chip of the regulator and the power loss by the reverse inductor current conduction. This regulator is designed to use a lithium battery input voltage 2.7~ 4.2V. Simulation results show the regulator output voltage can be stabilized at 1.78 ~ 1.84V. This regulator can drive the load current at 10m ~ 600mA and maintain 70% the above conversion efficiency. The maximum power conversion efficiency of the regulator is 96.6%.
A Thesis Submitted to I
摘 要 IV
誌 謝 VI
圖 目 錄 IX
表 目 錄 XIII
第1章 緒論
1.1 背景介紹
1.2 研究動機
1.3 論文架構
第2章 直流轉直流穩壓器概論
2.1 穩壓器分類
2.1.1 線性穩壓器簡介(Linear Regulator)
2.1.2 切換式穩壓器簡介(Switching Regulator)
2.1.3 切換式電容穩壓器簡介(Switching Capacitor)
2.2 切換式穩壓器分類
2.2.1 降壓切換式穩壓器(Buck Converter)
2.2.2 其他類型穩壓器
2.3 調變模式分類
2.3.1 電壓模式脈波寬度調變
2.3.2 電流模式脈波寬度調變
2.3.3 脈波頻率調變
2.3.4 脈波寬度/脈波頻率調變
2.4 切換式穩壓器規格
2.4.1 轉換效能 (Efficiency)
2.4.2 線性調節度(Line Regulation)
2.4.3 負載調節度(Load Regulation)
2.4.4 暫態響應(Transient Response)
2.4.5 輸出電壓漣波(Output Voltage Ripple)
第3章 降壓切換式穩壓器電路設計流程
3.1 系統規格
3.2 小訊號分析
3.2.1 電壓模式電路輸出級之轉移函數分析
3.2.2 電壓模式回授網路與補償之轉移函數分析
3.2.3 電流模式電路輸出級之轉移函數分析
3.2.4 電流模式回授網路與補償之轉移函數分析
3.3 系統層次設計
3.3.1 系統層次模擬交流分析:使用MATLAB
3.4 電路層次模擬
3.4.1 電路層次模擬暫態分析:使用SIMPLIS
3.4.2 電路層次模擬交流分析:使用SIMPLIS
第4章 電路設計與模擬
4.1 電路架構
4.2 誤差放大器
4.3 比較器
4.4 帶差參考電路
4.5 時脈與鋸齒波產生器
4.6 電流偵測電路
4.7 斜率補償電路
4.8 零電流偵測電路
4.9 緩啟動電路
4.10 SR Latch
4.11 功率級
4.12 工作模式選擇器
4.13 死區控制及緩衝電路
4.14 系統電路模擬
第5章 電路佈局及晶片效能
5.1 電路佈局
5.2 晶片效能
第6章 結論
6.1 結論
6.2 未來研究方向
參考文獻
自 述

[1] T. Burd and R. W. Brodersen, “Design issues for dynamic voltage scaling,” in IEEE ISLPED Dig. Tech. Papers, July 2000, pp. 9-14.
[2]Hsin-Hsin Ko, “A High Efficiency Synchronous CMOS Switching Buck Regulator with Accurate Current Sensing Technique,” NCU MS. Thesis, 2007.
[3] TI, “智慧型手機電源管理系統的設計, ” 零組件雜誌, 2004年6月號
[4]Wan-Rone Liou, Mei-Ling Yeh, and Yueh Lung Kuo, “A High Efficiency Dual-Mode Buck Converter IC For Portable Applications,” IEEE Trans. Power Electron, vol. 23, no. 2, pp. 667-677, Mar. 2008.
[5]Bi Zhuo, Xia Wenbin, “A PWM/PFM switch technique of dual-mode buck converter,” IET International Communication Conference, Wireless Mobile and Computing, pp. 357-360, Dec. 2009.
[6]National Semiconductor, ”Power,” High-Performance Analog Seminar, Mar. 2007.
[7]Chun-Yen Tseng, Li-Wen Wang, Po-Chiun Huang, “An Integrated Linear Regulator With Fast Output Voltage Transition for Dual-Supply SRAMs in DVFS Systems,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2239-2249, Nov. 2010.
[8]El-Nozahi M.,Amer A., Torres J., Entesari K., El-Nozahi M. “High PSR Low Drop-Out Regulator With Feed-Forward Ripple Cancellation Technique,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 565-577, Mar. 2010.
[9]Hoi Lee , Seong-Ryong Ryu, “An Efficiency-Enhanced DCM Buck Regulator With Improved Switching Timing of Power Transistors,” IEEE Trans. Circuit and System, vol. 57, no. 3, pp. 238-242, Mar. 2010.
[10]Maksimovic D, Dhar S., “Switched-capacitor DC-DC converters for low-power on-chip applications,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 54-59, Jul. 1999.
[11]C. Y. Wang, “A Current-Mode Buck Regulator with an Adjusted-Slope Compensation Ramp,” NCKU MS. Thesis, 2005.
[12]Robert W. Erickson, Dragan Maksimovic, “Fundamentals of Power Electronics” 2nd edition, Kluwer Academic Publishers, 2001.
[13]Robert W. Erickson, “DC-DC Power Converters,” article in Wiley Encyclopedia of Electrical and Electronics Engineering, 1992.
[14]H. W. Whittington, B. W. Flynn and D.E. Macpherson, “Switched Mode Power Supplies: Design and Construction,’’ John Wiley & Sons, 1992
[15]N. Mohan, T.M. Undeland, W.P. Robbins, “Power Electronics,” Third Edition, John Wiley & Sons, 2003.
[16]Daniel W. Hart, “Introduction to Power Electronics,” Third Edition, Prentice Hall, 1997.
[17]梁適安, ”交換式電源供給器之理論與實務設計,” 全華科技圖書股份有限公司, 2004.
[18]Wang Wei, “Current mode Synchronism Buck Converter with a New Non-overlap Circuit,” TKU MS. Thesis, 2011.
[19]Chun-Ting Kuo, “A High Efficiency Dual-Mode Boost Regulator,” NTOU MS. Thesis, 2006.
[20]Murata Power Solutions 28472C, data sheet.
[21]TDK YNA21B1C0G106M, data sheet.
[22]Ridley, R.B., “A New, Continuous-Time Model For Current-Mode Control,” IEEE Trans. Power Electron, vol. 6, no. 2, pp. 271-280, Apr. 1991.
[23] TEXAS INSTRUMENTS, “Designing Ultrafast Loop Response With Type-III Compensation for Current Mode Step-Down Converters,” Application Report, SLVA352A–October 2009–Revised September 2010.
[24] B. Razavi, “Design of Analog CMOS Integrated Circuit,” McGraw Hill, 2001.
[25] R. J. Baker, “CMOS Circuit Design, Layout, and Simulation,” 2nd, New York: IEEE Press, 2005.
[26] Cheung Fai Lee and Philip K. T. Mok, “A Monolithic Current-Mode CMOS DC–DC Converter With On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1 pp. 3-14, Jan. 2004.
[27] Ka Nang Leung, Philip K. T. Mok, and Chi Yat Leung, “A 2-V 23-μA 5.3-ppm/˚ C Curvature-Compensated CMOS Bandgap Voltage Reference,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 561-564, Mar. 2003.
[28]教育部VLSI教改計劃P&L聯盟, “IC Layout技職校院教師學習營講義,” July.
2005.
[29]J.C. Tsai, T.Y. Huang, W.W. Lai, and K.H. Chen, “Dual Modulation Technique for High Efficiency in High-Switching Buck Converters Over a Wide Load Range,” IEEE Trans. Circuit and System., vol. 58, no. 7, pp. 1671–1680, July. 2011.
[30]J. Xiao, A.V. Peterchev, J. Zhang, and S.R. Sanders, “A 4-μA quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2342-2348, Dec. 2004.
[31]H.W. Huang, K.H. Chen, and S.Y. Kuo, “Dithering skip modulation width and dead time controllers in highly efficient DC-DC converters for system-on-chip applications,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2451-2465, Nov. 2007.
[32]Jaya Deepti Dasika, Behrooz Bahrani, Maryam Saeedifard, Alireza Karimi and Alfred Rufer, “Multivariable Control of Single-Inductor Dual-Output Buck Converters,” IEEE J. Solid-State Circuits, vol. 29, no. 4, pp. 2061-2070, April. 2014.
[33]Djilali Hamza, Majid Pahlevaninezhad and Praveen K. Jain, “Implementation of a Novel Digital Active EMI Technique in a DSP-Based DC–DC Digital Controller Used in Electric Vehicle (EV),” IEEE Trans. Power Electron, vol. 28, no. 7, pp. 3126-3137, July. 2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top