跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭伊伶
研究生(外文):Cheng, Yi-Ling
論文名稱:數位化高中基礎化學論證整合網路資訊搜尋課程之研究
論文名稱(外文):A Study of On-line High School Chemistry Argumentation Integrate with Web-searching Strategies
指導教授:佘曉清佘曉清引用關係
指導教授(外文):She, Hsiao-Ching
學位類別:碩士
校院名稱:國立交通大學
系所名稱:教育研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:78
中文關鍵詞:網路化論證論證能力網路資訊搜尋
外文關鍵詞:Web argumentationArgumentation abilityWeb-searching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
本研究以論證理論為研究設計的主軸,同時結合網路資訊搜尋與基礎化學網路化論證學習環境,設計個人論證教學模式與小組論證教學模式進行網路化論證學習課程。研究目的為探討網路化小組論證教學模式與網路化個人論證教學模式經由網路化論證課程後在概念建構、論證能力的差異。同時針對兩組教學模式的學生在網路化論證學習歷程與網路資訊搜尋進行分析,深入了解學生在網路化論證課程實施後化學概念建構與論證內涵的品質成長情形。
研究採用準實驗設計法,研究設計將常態分班之三班高一學生分為兩組,分別為網路化個人論證教學模式61人與網路化小組論證教學模式62人。兩組進行為期六週的網路化基礎化學論證教學,比較兩組學生在基礎化學主題相依二階概念測驗與基礎化學主題相依論證能力前測與後測的差異,同時針對兩組學生在網路化論證學習歷程中,分別就化學概念、論證能力、網路資訊搜尋的論證內涵與使用頻率進行質性分析。
結果顯示兩組教學模式的學生在化學概念與論證能力均進步,但是兩組比較上則化學概念與論證能力上均未達到顯著差異。在網路化論證學習歷程中,顯示兩組教學模式的學生在概念正確性總次數均隨單元有顯著增加。在論證能力隨著不同論證要素,其論證的量整體表現也有進步的趨勢,兩組教學模式在單元三達顯著差異,即網路化個人論證高於網路化小組論證教學模式。在網路資訊搜尋的質性分析,結果顯示兩組教學模式的學生會使用不同的網路資訊搜尋策略。個人論證教學模式在形成宣稱的網路資訊搜尋總頻率有顯著高於小組論證教學模式,表示網路化個人論證教學模式的學生藉由較頻繁的網路資訊搜尋加強先備知識的完整性。而網路化小組論證教學模式在形成支持的網路資訊搜尋總頻率有顯著高於個人論證,表示網路化小組論證教學模式的學生除了網路資訊搜尋,還可以藉由同儕的論點幫助形成自己的論點。
經由上述結果,本研究顯示經過網路化論證教學模式,兩組網路化論證教學模式的學生都可以透過網路資訊搜尋提升化學概念與增進論證能力。

The design of Web-based chemistry argumentation learning content integrated with Web-searching strategies was developed for high school chemistry course. This study is to examine its effectiveness on 10th grade student’s scientific concepts, scientific argumentation ability and Web-searching behavior between two different Web-based scientific argumentation programs, one with a self-argumentation component and the other with a group argumentation component.
The quasi-experiment design was adopted in this study. There are three classes of 10th grade students participated in this study. Students were randomly assigned into the self-argumentation component (61 students ) and the group-argumentation component (62 students ). All 123 students received Web-based argumentation learning lessons of chemical reaction for six weeks. Both groups were administered a pre- and post- chemical conceptual achievement two-tier test and a content-dependent argumentation ability test. In addition, qualitative analysis of the learning progresses for chemical conceptions, argumentation ability, argumentation content and frequency of Web-searching was applied for the two groups.
Results showed that the students of both groups’ chemical conceptual and argumentation ability increased, however, no statistically significance difference level was observed between self-argumentation and group-argumentation conditions. The results of the Web-argumentation process showed that both groups students’ correct scientific concept significantly increased as time went on, as well as the amount of argumentations they generated. Additionally, the use of Web-searching strategies is somewhat different between two groups. The self-argumentation group significantly outperform than the other group on their amount of Web-searching behavior while forming their claim. It implies that students of self-argumentation group need more Web-searching to help them formulating their claim arguments. However, group-argumentation group significantly outperform than another groups on their amount of Web-searching behavior while forming their backing arguments. It implies that students form their arguments not only from their peers but also from Web-searching. This study demonstrated that both self and group-argumentation can improve their chemistry concepts and argumentation ability with the help of using Web-searching functions.

中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 v
表 目 錄 vii
圖 目 錄 viii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究問題 3
第四節 名詞釋義 4
第五節 研究範圍與限制 5
第二章 文獻探討 6
第一節 科學論證 6
第二節 網路證學習環境 10
第三節 基礎化學主題單元 13
第三章 研究方法 15
第一節 研究對象 15
第二節 研究設計 16
第三節 教學流程 17
第四節 研究工具 19
第五節 教學設計 24
第六節 資料蒐集與分析 24

第四章 研究結果與討論 29
第一節 網路化論證學習課程之測驗成效分析 29
第二節 網路化論證學習歷程分析 32
第三節 網路資訊搜尋行為之分析 50
第五章 結論與建議 60
第一節 結論與討論 60
第二節 建議 66
參考文獻 68
中文部分 68
英文部分 68
附錄一 基礎化學主題相依二階概念測驗 75
附錄二 基礎化學主題相依論證能力測驗 76
附錄三 網路化論證學習課程設計 77
附錄四 論證品質紀錄分級標準 78

中文部分
林小慧(2008)。學習成效之相關研究。教育心理學報,39(4),533-554。
邱美虹 (1994):從自我解釋所產生的推論 探究高中生化學平衡的學習。師大學報,39,489-524。
邱美虹(2005)。台灣地區中小學化學概念之心智模式與成因之研究(Ι)-子計畫二:台 灣地區中學生「原子/分子/粒子、化學平衡、酸鹼鹽」結案報告,未出版。
詹耀宗、邱鴻麟(2004)。以多元觀點探討中學生氧化還原迷思概念。高雄師範大學學報,17,337-358。
盧文顥(1991)。從粒子模型概念探討學生對於溶液概念之思考模式。國立臺灣師範大學化學系碩士論文,未出版,台北市。

英文部分
American Association for the Advancement of Science [AAAS]. (1993). Benchmarks for science literacy. New York, NY: Oxford University Press.
Ackerman, Ernest, &; Hartman, Karen. (1997), Searching and Researching on the Internet and the World Wide Web, Franklin, Beedle &; Associates, Inc.
Andriessen, J. (2006). Arguing to learn. In R. K.Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 443-460). Cambridge, England: Cambridge University Press.
Baker, M. J. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notions. In J. Andriessen, M. J. Baker, &; D. D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments, 47–78.
Bell, P., &; Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22, 797-817.
Binkley, R. W. (1995). Argumentation, education and reasoning. Informal Logic, 17(2), 127–143.
Chen, C. H. &; She, H. C. (2012). The impact of Recurrent On-line Synchronous Scientific Argumentation on Students’ Argumentation and Conceptual Change. Educational Technology &; Society, 15(1), 197-210.
Benson, D. L. (1993). Students’ preconceptions of the nature of gases. Journal of Research in Science Teaching, 30(6), 587-597.
de Berg, K. C. (1995). Student understanding of the volume, mass, and pressure of air within a sealed syringe in different states of compression. Journal of Research in Science Teaching, 32(8), 871-884.
de Groot, R., Drachman, R., Hever, R., Schwarz, B., Hoppe, U., Harrer, A., et al. (2007). Computer supported moderation of e-discussions: Mice, minds, and society-The computer supported collaborative learning. International Society of the Learning Sciences, 165-167.
Driver, R., &; Russell, J. (1982). An investigation in the idea of heat, temperature and change of state, of children between 8 and 14 years. Leeds: University of leeds.
Driver, R. (1985). The conservation of matter under physical and chemical: A Children’s ideas in science (pp. 145-169). Philadelphia: Open University Press.
Driver, R., Newton, P., &; Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(33), 287-312.
Duschl, R., &; Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39-72.
Furio, C. J., Perez, J. H., &; Harris, H. H. (1987). Parallels between adolescents’ conception of gases and the history of chemistry. Journal of Chemical Education, 64(7), 616-618.
Goodwin, A. (2002). Teachers' continuing learning of chemistry: Some implications for science teaching. Chemistry Education: Research and Practice in Europe, 3(3).
Hewitt, J. (2005). Computers as supports for argumentation: Possibilities and challenges. Canadian Journal of Science, Mathematics and Technology Education, 5(2), 265-269.
Huddle, P. A &; Pillay, A.E. (1996). An in-deep study of misconceptions in stoichiometry and chemical equilibrium at a South African university. Journal of Research Science Teaching, 33, 65-77.
Jeong, A. C. (2005). The Effects of Linguistic Qualifiers and Intensifiers on Group Interaction and Performance in Computer-Supported Collaborative Argumentation. International Review of Research in Open and Distance Learning, 6(3).
Johnson, P. (1998a). Progression in children understanding of a ‘basic’ particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393-412.
Johnson, P. (1998b). Children’s understanding of changes of state involving the gas state, Part 1: Boiling water and the particle theory. International Journal of Science Education, 20(5), 567-583.
Johnson, P. (1998c). Children understanding of changes of state involving the gas state, Part 2: Evaporation and condensation below boiling point. International Journal of Science Education, 20(6), 695-709.
Joiner, R., &; Jones, S. (2003). The effects of communication medium on argumentation and the development of critical thinking. International Journal of Educational Research, 39(8), 861-871.
Karacapilidis, N., &; Papadias, D. (2001). Computer supported argumentation and collaborative decision making: The Hermes system. Information Systems, 26(4), 259–277.
Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the sci- ence dimension of controversial socioscien- tific issues. Science Education, 85(3), 291- 310.
Kuhn, T. (1970). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.
Kuhn, D. (1991). The Skills of Argument. New York: Cambridge University Press.
Kuhn, D. (1993). Science as argument: implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337.
Kuhn, D. (2005). Education for thinking. Cambridge, Massachusetts: Harvard University Press.
Kuhn, D., &; Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking and Reasoning, 13, 90-104.
Lawson A. E. (2003). The nature and development of hypothetico- predictive argumentation with implications for science teaching. International journal of science education. 25, 1387-1408.
Lawson, A. (2003). The neurological basis of learning, development and discovery: Implications for science and mathematics instruction. Netherlands: Kluwer Academic Publishers.
Linn, M. C. (1998). The impact of technology on science instruction: Historical trends and current opportunities. In B. J. Fraser &; K. G. Tobin (Eds.), International handbook of science education (pp. 265-294). Boston: Kulwer Academic Publishers.
Linn, M. C., Clark, D., &; Slotta, J. D. (2003). Wise design for knowledge integration. Science Education, 87(4), 517-538.
Lowrance, J., Harrison, I., Rodriguez, A., Yeh, E., Boyce, T., Murdock, J., et al. (2008). Template-based structured argumentation. In A. Okada, S. Buckingham Shum, &; T. Sherborne (Eds.), Knowledge cartography: Software tools and mapping techniques (pp. 307–333). London: Springer.
McAlister, S., Ravenscroft, A., &; Scanlon, E. (2004). Combining interaction and context design to support collaborative argumentation using a tool for synchronous CMC. Journal of Computer Assisted Learning, 20(3), 194-204.
Morge, M. (2004). Computer-supported collaborative argumentation. Paper presented at the CMNA IV. 4th Workshop on Computational Models of Natural Argument, ECAI 2004.
Newton, D. M. (1999). Pressure, pressure everywhere. Science and children, 36(8), 34-37.
Newton, P., Driver, R., &; Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576.
Osborne, J., Erduran, S., &; Simon, S. (2003). Ideas, evidence and argument in science: Teacher training pack. Nuffield, UK: Nuffield Foundation.
Osborne, J., Erduran, S., &; Simon, S. (2004). Enhancing the quality of argumentation in science classrooms. Journal of Research in Science Teaching, 41(10), 994-1020.
Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463-466.
Niaz, M., Aguilera, D., Maza, A., &; Liendo, G. (2002). Arguments, Contradic- tions, Resistances, and Conceptual Change in Students’ Understanding of Atomic Structure. Science Education, 86(4), 505-525.
Scheuer, O., Loll, F., Pinkwart, N., &; McLaren, B. (2010). Computer-supported argumentation: A review of the state of the art. International Journal of Computer-Supported Collaborative Learning, 5(1), 43-102.
Schneider, D. C., Voigt, C., &; Betz, G. (2007). ArguNet—a software tool for collaborative argumentation analysis and research. Paper presented at the 7th Workshop on Computational Models of Natural Argument.
Schollum, B. (1981). Chemical Change. Learning in Science Project. Hamilton: Universidad de Waikato.
Schollum, B. (1982). Reaction (Report No. 37). Learning in Science Project. Hamilton: Universidad de Waikato.
Schwarz, B. B., &; Glassner, A. (2007). The role of floor control and of ontology in argumentative activities with discussion-based tools. International Journal of Computer-Supported Collaborative Learning, 2(4), 449-478.
She, H. C., Cheng, M. T., Li, T.W., Wang, C. Y., Chiu, H. T., Lee, P. Z., Chou, W. C., Chung, M. H. (2012). Web-based undergraduate chemistry problem-solving: The interplay of task performance, domain knowledge and web-searching strategies. Computers &; Education, 59(2), 750-761.
Simon, S., Erduran, S., &; Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260.
Tannen, D. (1998). The Argument Culture: Moving from Debate to Dialogue. New York: Random House Trade.
Taylor, C. (1996). Defining Science. Madison, WI: University of Wisconsin Press
Toulmin, S. E. (1958). The Uses of Argument. Cambridge: Cambridge University Press.
Tytler, R. (1998a). The nature of students' informal science conceptions. International Journal of Science Education, 20(8), 901-927.
Tytler, R. (1998b). Children's conceptions of air pressure: Exploring the nature of conceptual change. International Journal of Science Education, 20(8), 929-958.
Van Eemeren, F. H. (1995). A world of difference: The rich state of argumentation theory. Informal Logic, 17(2), 144-158.
Veerman, A., Andriessen, J., &; Kanselaar, G. (2002). Collaborative argumentation in academic education. Instructional Science, 30(3), 155-186.
Weinberger, A., &; Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers &; Education, 46(1), 71-95.
Yeh, K. H. &; She, H. C. (2010). On-line Synchronous Scientific Argumentation Learning: Nurturing Students’ Argumentation Ability and Conceptual Change in Science Context. Computers &; Education, 55(2), 586-602.
Zohar, A., &; Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top