中文部分
林小慧(2008)。學習成效之相關研究。教育心理學報,39(4),533-554。
邱美虹 (1994):從自我解釋所產生的推論 探究高中生化學平衡的學習。師大學報,39,489-524。邱美虹(2005)。台灣地區中小學化學概念之心智模式與成因之研究(Ι)-子計畫二:台 灣地區中學生「原子/分子/粒子、化學平衡、酸鹼鹽」結案報告,未出版。
詹耀宗、邱鴻麟(2004)。以多元觀點探討中學生氧化還原迷思概念。高雄師範大學學報,17,337-358。
盧文顥(1991)。從粒子模型概念探討學生對於溶液概念之思考模式。國立臺灣師範大學化學系碩士論文,未出版,台北市。英文部分
American Association for the Advancement of Science [AAAS]. (1993). Benchmarks for science literacy. New York, NY: Oxford University Press.
Ackerman, Ernest, &; Hartman, Karen. (1997), Searching and Researching on the Internet and the World Wide Web, Franklin, Beedle &; Associates, Inc.
Andriessen, J. (2006). Arguing to learn. In R. K.Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 443-460). Cambridge, England: Cambridge University Press.
Baker, M. J. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notions. In J. Andriessen, M. J. Baker, &; D. D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments, 47–78.
Bell, P., &; Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22, 797-817.
Binkley, R. W. (1995). Argumentation, education and reasoning. Informal Logic, 17(2), 127–143.
Chen, C. H. &; She, H. C. (2012). The impact of Recurrent On-line Synchronous Scientific Argumentation on Students’ Argumentation and Conceptual Change. Educational Technology &; Society, 15(1), 197-210.
Benson, D. L. (1993). Students’ preconceptions of the nature of gases. Journal of Research in Science Teaching, 30(6), 587-597.
de Berg, K. C. (1995). Student understanding of the volume, mass, and pressure of air within a sealed syringe in different states of compression. Journal of Research in Science Teaching, 32(8), 871-884.
de Groot, R., Drachman, R., Hever, R., Schwarz, B., Hoppe, U., Harrer, A., et al. (2007). Computer supported moderation of e-discussions: Mice, minds, and society-The computer supported collaborative learning. International Society of the Learning Sciences, 165-167.
Driver, R., &; Russell, J. (1982). An investigation in the idea of heat, temperature and change of state, of children between 8 and 14 years. Leeds: University of leeds.
Driver, R. (1985). The conservation of matter under physical and chemical: A Children’s ideas in science (pp. 145-169). Philadelphia: Open University Press.
Driver, R., Newton, P., &; Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(33), 287-312.
Duschl, R., &; Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39-72.
Furio, C. J., Perez, J. H., &; Harris, H. H. (1987). Parallels between adolescents’ conception of gases and the history of chemistry. Journal of Chemical Education, 64(7), 616-618.
Goodwin, A. (2002). Teachers' continuing learning of chemistry: Some implications for science teaching. Chemistry Education: Research and Practice in Europe, 3(3).
Hewitt, J. (2005). Computers as supports for argumentation: Possibilities and challenges. Canadian Journal of Science, Mathematics and Technology Education, 5(2), 265-269.
Huddle, P. A &; Pillay, A.E. (1996). An in-deep study of misconceptions in stoichiometry and chemical equilibrium at a South African university. Journal of Research Science Teaching, 33, 65-77.
Jeong, A. C. (2005). The Effects of Linguistic Qualifiers and Intensifiers on Group Interaction and Performance in Computer-Supported Collaborative Argumentation. International Review of Research in Open and Distance Learning, 6(3).
Johnson, P. (1998a). Progression in children understanding of a ‘basic’ particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393-412.
Johnson, P. (1998b). Children’s understanding of changes of state involving the gas state, Part 1: Boiling water and the particle theory. International Journal of Science Education, 20(5), 567-583.
Johnson, P. (1998c). Children understanding of changes of state involving the gas state, Part 2: Evaporation and condensation below boiling point. International Journal of Science Education, 20(6), 695-709.
Joiner, R., &; Jones, S. (2003). The effects of communication medium on argumentation and the development of critical thinking. International Journal of Educational Research, 39(8), 861-871.
Karacapilidis, N., &; Papadias, D. (2001). Computer supported argumentation and collaborative decision making: The Hermes system. Information Systems, 26(4), 259–277.
Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the sci- ence dimension of controversial socioscien- tific issues. Science Education, 85(3), 291- 310.
Kuhn, T. (1970). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.
Kuhn, D. (1991). The Skills of Argument. New York: Cambridge University Press.
Kuhn, D. (1993). Science as argument: implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337.
Kuhn, D. (2005). Education for thinking. Cambridge, Massachusetts: Harvard University Press.
Kuhn, D., &; Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking and Reasoning, 13, 90-104.
Lawson A. E. (2003). The nature and development of hypothetico- predictive argumentation with implications for science teaching. International journal of science education. 25, 1387-1408.
Lawson, A. (2003). The neurological basis of learning, development and discovery: Implications for science and mathematics instruction. Netherlands: Kluwer Academic Publishers.
Linn, M. C. (1998). The impact of technology on science instruction: Historical trends and current opportunities. In B. J. Fraser &; K. G. Tobin (Eds.), International handbook of science education (pp. 265-294). Boston: Kulwer Academic Publishers.
Linn, M. C., Clark, D., &; Slotta, J. D. (2003). Wise design for knowledge integration. Science Education, 87(4), 517-538.
Lowrance, J., Harrison, I., Rodriguez, A., Yeh, E., Boyce, T., Murdock, J., et al. (2008). Template-based structured argumentation. In A. Okada, S. Buckingham Shum, &; T. Sherborne (Eds.), Knowledge cartography: Software tools and mapping techniques (pp. 307–333). London: Springer.
McAlister, S., Ravenscroft, A., &; Scanlon, E. (2004). Combining interaction and context design to support collaborative argumentation using a tool for synchronous CMC. Journal of Computer Assisted Learning, 20(3), 194-204.
Morge, M. (2004). Computer-supported collaborative argumentation. Paper presented at the CMNA IV. 4th Workshop on Computational Models of Natural Argument, ECAI 2004.
Newton, D. M. (1999). Pressure, pressure everywhere. Science and children, 36(8), 34-37.
Newton, P., Driver, R., &; Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576.
Osborne, J., Erduran, S., &; Simon, S. (2003). Ideas, evidence and argument in science: Teacher training pack. Nuffield, UK: Nuffield Foundation.
Osborne, J., Erduran, S., &; Simon, S. (2004). Enhancing the quality of argumentation in science classrooms. Journal of Research in Science Teaching, 41(10), 994-1020.
Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463-466.
Niaz, M., Aguilera, D., Maza, A., &; Liendo, G. (2002). Arguments, Contradic- tions, Resistances, and Conceptual Change in Students’ Understanding of Atomic Structure. Science Education, 86(4), 505-525.
Scheuer, O., Loll, F., Pinkwart, N., &; McLaren, B. (2010). Computer-supported argumentation: A review of the state of the art. International Journal of Computer-Supported Collaborative Learning, 5(1), 43-102.
Schneider, D. C., Voigt, C., &; Betz, G. (2007). ArguNet—a software tool for collaborative argumentation analysis and research. Paper presented at the 7th Workshop on Computational Models of Natural Argument.
Schollum, B. (1981). Chemical Change. Learning in Science Project. Hamilton: Universidad de Waikato.
Schollum, B. (1982). Reaction (Report No. 37). Learning in Science Project. Hamilton: Universidad de Waikato.
Schwarz, B. B., &; Glassner, A. (2007). The role of floor control and of ontology in argumentative activities with discussion-based tools. International Journal of Computer-Supported Collaborative Learning, 2(4), 449-478.
She, H. C., Cheng, M. T., Li, T.W., Wang, C. Y., Chiu, H. T., Lee, P. Z., Chou, W. C., Chung, M. H. (2012). Web-based undergraduate chemistry problem-solving: The interplay of task performance, domain knowledge and web-searching strategies. Computers &; Education, 59(2), 750-761.
Simon, S., Erduran, S., &; Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260.
Tannen, D. (1998). The Argument Culture: Moving from Debate to Dialogue. New York: Random House Trade.
Taylor, C. (1996). Defining Science. Madison, WI: University of Wisconsin Press
Toulmin, S. E. (1958). The Uses of Argument. Cambridge: Cambridge University Press.
Tytler, R. (1998a). The nature of students' informal science conceptions. International Journal of Science Education, 20(8), 901-927.
Tytler, R. (1998b). Children's conceptions of air pressure: Exploring the nature of conceptual change. International Journal of Science Education, 20(8), 929-958.
Van Eemeren, F. H. (1995). A world of difference: The rich state of argumentation theory. Informal Logic, 17(2), 144-158.
Veerman, A., Andriessen, J., &; Kanselaar, G. (2002). Collaborative argumentation in academic education. Instructional Science, 30(3), 155-186.
Weinberger, A., &; Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers &; Education, 46(1), 71-95.
Yeh, K. H. &; She, H. C. (2010). On-line Synchronous Scientific Argumentation Learning: Nurturing Students’ Argumentation Ability and Conceptual Change in Science Context. Computers &; Education, 55(2), 586-602.
Zohar, A., &; Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62.