跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2025/11/22 01:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:連崇志
研究生(外文):Chung-Jr Lian
論文名稱:影像編碼系統之設計與製作:JPEG,JPEG2000與MPEG-4VTC
論文名稱(外文):Design and Implementation of Image Coding Systems: JPEG, JPEG 2000 and MPEG-4 VTC
指導教授:陳良基陳良基引用關係
指導教授(外文):Liang-Gee Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:136
中文關鍵詞:影像壓縮積體電路影像編碼架構
外文關鍵詞:JPEGJPEG2000MPEG-4image coding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:856
  • 評分評分:
  • 下載下載:121
  • 收藏至我的研究室書目清單書目收藏:2
影像編碼系統的設計與製作是本論文的研究主題。我們以三個主要的影像編碼標準─JPEG,JPEG 2000,與MPEG-4 VTC─為研究實例,針對影像壓縮演算法的特性,分別提出特製化的硬體架構設計,以提升執行效率。我們提出了全管線式JPEG編碼器與解碼器的架構,每個週期可以處理一個取樣資料,也就是在50 MHz的工作頻率之下,可以處理五千萬個資料點,這樣的高效能架構,滿足數百萬畫素等級數位相片的快速編解碼規格。此外,整體架構的特色在於完整性,可以不需額外處理器的協助,獨立完成JPEG編碼與解碼。其中,我們針對泛用解碼器提出了支援使用者自訂的霍夫曼表的解碼功能,以應付不同來源的JPEG檔案的解壓縮。針對新一代的影像壓縮標準JPEG 2000,我們深入分析其中最為複雜的EBCOT演算法,提出方塊編碼與解碼的加速引擎,提升位元層級 (bit-level) 運算的效能。此外,進一步提出EBCOT Tier-2的硬體架構,並且藉由EBCOT Tier-2的資訊迴授,可以隨著壓縮倍率的提昇,大幅減少EBCOT的運算量。另一個與JPEG 2000演算法類似的MPEG-4視覺材質編碼 (Visual Texture Coding) 技術,同樣採用離散小波轉換與算數編碼技術,我們針對其中的零樹 (zero-tree) 編碼架構作最佳化設計,特製化位址產生器及控制,以達成流暢的資料流與大量的資料存取。這些高效能的特製化硬體架構設計,對於後PC時代電子產品的高速影像處理功能需求,提供了最具競爭力的方案。
In this dissertation, the hardware architecture design and implementation of image coding systems
are presented. The research focuses on three image coding standards: JPEG, JPEG2000, and MPEG-4
Visual Texture Coding (VTC).
JPEG is a well-known and matured standard. It has been widely used for natural image compression,
especially very popular for digital still camera applications. In the first part of this
dissertation, we proposed fully pipelined JPEG encoder and decoder for high speed image
processing requirements in post-PC electronic appliances. The processing power is 50 million
samples per second at 50 MHz working frequency. The proposed architectures can handle
million-pixel digital images'''''''' encoding and decoding in very high speed. Other feature is that
both the encoder and decoder are stand-alone and full-function solutions. They can encode or
decode the JPEG compliant file without any aids from extra processor.
JPEG2000 is the latest image coding standard. It is defined to be a more powerful standard after
JPEG. JPEG2000 provids better compression performance, especially at low bitrates. It also
provides various features, such as quality and resolution progressive, region of interest coding,
lossy and lossless coding in an unified framework, etc. The performance of JPEG2000 comes at the
cost of higher computational complexity. In the second part of the dissertation, we discuss the
challenges and issues of the design of a JPEG2000 coding system. Cycle efficient block encoding
and decoding engines, and computation reduction techniques by Tier-2 feedback are proposed for
the most critical module, Embedded Block Coding with Optimized Truncation (EBCOT). With the
proposed parallel checking and skipping-based coding schemes, the scanning cycles can be reduced
to 40% of the direct bit-by-bit implementation. As for the Tier-2 feedback control in lossy
coding mode, the execution cycles and therefore power consumption can be lowered to 50% in the
case of about 10 times compression.
MPEG-4 Visual Texture Coding (VTC) tool is another compression algorithm that also adopts the
wavelet-based algorithm. In VTC, Zero-tree coding algorithm is adopted to generate the context
symbols for arithmetic coder. In the third part, the design of the zero-tree coding algorithm is
discussed. Tree-depth scan with multiple quantization mode are realized. Dedicated data access
scheme are designed for smooth coding flow.
In each chapter, detailed analysis of the algorithms are provided first. Then, efficient hardware
architectures are proposed exploiting special algorithm characteristics. The proposed dedicated
architectures can greatly improve the processing performance compared with a general
processor-based solution. For non-PC consumer applications, these architectures are more
competitive solutions for cost-efficient and high performance requirements.
摘 要
第一章 簡 介
第二章 全管線式JPEG編碼器與解碼器系統架構設計
第三章 JPEG 2000演算法分析暨硬體加速與運算減量架構設計
第四章 MPEG-4視覺材質編碼之零樹編碼架構設計
第五章 結 論
[1] Information Technology─Digital compression and coding of continuous-tone
still images, ISO/IEC 10918-1 and ITU-T Recommendation T.81 Std.,
1994.
[2] JPEG 2000 Part I, ISO/IEC JTC1/SC29/WG1 Final Committee Draft, Rev.
1.0, Mar. 2000.
[3] Information Technology─Generic Coding of Audio-Visual Objects.,
ISO/IEC FDIS 14496-2.
[4] W. Kou, Digital image compression─algorithms and standards. Norwell,
MA: Kluwer academic, 1995.
[5] Y. Q. Shi and H. Sun, Eds., Image and Video Compression for Multimedia
Engineering. Boca Raton, Florida: CRC Press, 2000.
[6] R. Fano, “Transmission of information,” Research Lab. Electronics, MIT,
Tech. Rep. 65, 1949.
[7] J. Fenlason and R. Stallman, “GNU gprof─the GNU profiler,” Free Sort-ware
Foundation, Inc.,” Manual, 2000.
[8] P. Kuhn, “A complexity analysis tool: iprof (version 0.41),” ISO/IEC
JTC1/SC29/WG11, Dublin (Ireland), Doc. M3551, July 1998.
[9] “WILDCARD and FIREBIRD FPGA reconfigurable boards,” Annapolis
Micro Systems, Inc. [Online]. Available: http://www.annapmicro.com/
[10] JPEG File Interchange Format, Version 1.02, Eric Hamilton, C-Cube Mi-crosystems
Std., Sept. 1992.
[11] “EXIF: Exchangeable image file format,” EXIF.org. [Online]. Available:
http://www.exif.org/
[12] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression
Standard. New York: Van Nostrand Reinhold, 1992.
[13] V. Bhaskaran and K. Konstantinides, Image and Video Compression
Standards─Algorithms and Architectures, 2nd ed. Norwell, MA: Kluwer
Academic, 2000.
[14] N. Ahmed, T. Natarajan, and K. R. Rao, “On image processing and a discrete
cosine transform,” IEEE Trans. Comput., vol. C-23, no. 1, pp. 90—93, Jan.
1974.
[15] W. K. Pratt, Digital Image Processing, 2nd ed. New York: Wiley-Interscience,
1991.
[16] “The independent JPEG group’s JPEG software,” Independent JPEG Group.
[Online]. Available: http://www.ijg.org/
[17] A. Madisetti and J. Alan N. Willson, “A 100 MHz 2-D 8 ×8 DCT/IDCT
processor for HDTV applications,” IEEE Trans. Circuits Syst. Video Tech-nol.,
vol. 5, no. 2, Apr. 1995.
[18] G. S. Taylor and G. M. Blair, “Design for the discrete cosine transform in
VLSI,” IEE Proc. Comput. Digit. Tech., vol. 145, no. 2, pp. 127—133, Mar.
1998.
[19] M. Kovac and N. Rauganathan, “JAGUAR: A full pipelined VLSI architec-ture
for JPEG image compression standard,” Proc. IEEE, vol. 83, no. 2, pp.
247—258, Feb. 1995.
[20] H.-C. Chang, L.-G. Chen, Y.-C. Chang, and S.-C. Huang, “A VLSI architec-ture
design of VLC encoder for high data rate video/image coding,” in Proc.
IEEE International Symposium on Circuits and Systems (ISCAS’99), vol. 4,
Florida, USA, May 1999, pp. 398—401.
[21] M.-H. Chen, T.-K. Chen, Y.-C. Chen, J.-S. Pan, and Y.-S. Weng, “VLSI im-plementation
of single chip JPEG codec,” in Proc. International Symposium
on VLSI Technology, Systems, and Applications, 1993, pp. 189—193.
[22] M. Bolton, R. Boulton, J. Martin, S. Ng, and S. Turner, “A complete single-chip
implementation of the JPEG image compression standard,” in Proc.
IEEE Custom Integrated Circuit Conference (CICC’91), 1991, pp. 12.2.1—
12.2.4.
[23] P. Ruetz and P. Tong, “Method and apparatus for decoding Huffman codes,”
U.S. Patent 5 254 991, Oct. 19, 1993.
[24] S. H. Sun, S. H. Du, H. T. Yang, and S. J. Lee, “Design and implementation
of a JPEG chip,” in Proc. Asia Pacific Conference on Multimedia Technology
and Applications 2000, 2000, pp. 384—392.
[25] D’Ortenzio and J. Remo, “DX JPEG Huffman decoder,” U.S. Patent
5 825 312, Oct. 20, 1998.
[26] “AT76C101: JPEG image compression processor, datasheet, rev. 0751a-04/
98,” ATMEL Corporation.
[27] B. W. Y. Wei and T. H. Meng, “A parallel decoder of programmable Huffman
codes,” IEEE Trans. Circuits Syst. Video Technol., vol. 5, pp. 175—178, Apr.
1995.
[28] D. S. Taubman and M. W. Marcellin, JPEG2000 image compression funda-mentals,
standards and practice. Norwell, MA: Kluwer Academic, 2002.
[29] M. D. Adams, F. K. H. Man, and T. Ebrahimi, “JPEG 2000: The next gen-eration
still image compression standard,” ISO/IEC JTC1/SC29/WG1, Doc.
N1734, June 2000.
[30] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image
compression standard,” IEEE Signal Processing Magazine, pp. 36—58, Sept.
2001.
[31] M. J. Gormish, D. Lee, and M. W. Marcellin, “JPEG 2000: overview, archi-tecture,
and applications,” in Proc. IEEE International Conference on Image
Processing (ICIP’00), vol. 2, Vancouver, BC, Canada, Sept. 2000, pp. 29—
32.
[32] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An overview
of JPEG-2000,” in Proc. IEEE Data Compression Conference (DCC’00),
2000, pp. 523—541.
[33] J. F. Barda, “JPEG2000, the next millennium compression standard for
still images,” in Proc. IEEE Int. Conf. Multimedia Computing and Systems
(ICMCS’99), vol. 2.
[34] D. Taubman and H. Labs, “Report on core experiment codeff22,
EBCOT: Embedded block coding with optimized truncation,” ISO/IEC
JTC1/SC29/WG1, Tech. Rep. N1020R, Oct. 1998.
[35] D. Taubman, “High performance scalable image compression with EBCOT,”
IEEE Trans. Image Processing, vol. 9, pp. 1158—1170, July 2000.
[36] D. Taubman, E. Ordentlich, M. Weinberger, and G. Seroussi, “Embedded
block coding in JPEG 2000,” Signal Processing: Image Communication,
vol. 17, pp. 49—72, Jan. 2002.
[37] K.-F. Chen, C.-J. Lian, H.-H. Chen, and L.-G. Chen, “Analysis and architec-ture
design of EBCOT in JPEG2000,” in Proc. IEEE Int. Symp. Circuits and
Systems (ISCAS’01), Sydney, Australia, May 2001, pp. 765—768.
[38] “JPEG2000 encoder datasheet,” inSilicon Corporation, 2001. [Online].
Available: http://www.insilicon.com
[39] “ADV-JP2000: JPEG2000 co-processor, preliminary technical data,”
Analog Devices, Inc., 2001. [Online]. Available: http://www.analog.com
[40] M. Vishwanath, R. Owens, and M. J. Irwin, “VLSI architectures for the
discrete wavelet transform,” IEEE Trans. Circuits Syst. II, vol. 42, no. 5, pp.
305—316, may 1995.
[41] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal
wavelet construction,” in Proc. SPIE Wavelet Applications in Signal and Im-age
Processing III, 1995, pp. 68—79.
[42] J.-M. Jou, Y.-H. Shiau, and C.-C. Liu, “Efficient VLSI architectures for the
biothogonal wavelet transform by filter bank and lifting scheme,” in Proc.
IEEE International Symposium on Circuits and Systems (ISCAS’01), Syd-ney,
Australia, May 2001, pp. 529—532.
[43] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Efficient VLSI architectures of
lifting-based discrete wavelet transform by systematic design method,” in
Proc. IEEE International Symposium on Circuits and Systems (ISCAS’02),
Phoenix, USA, May 2002, pp. 565—568.
[44] JBIG Bi-Level Image Compression Standard, ISO/IEC 11544 and ITU-T
Recommendation T.82 Std., 1993.
[45] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding
using wavelet transform,” IEEE Trans. Image Processing, vol. 1, pp. 205—
220, Apr. 1992.
[46] C. Parisot, M. Antonini, and M. Barlaud, “EBWIC: a low complexity and
efficient rate constrained wavelet image coder,” Proc. IEEE Int. Conf. on
Image Processing, vol. 1, pp. 653—656, 2000.
[47] T.-H. Chang, L.-L. Chen, C.-J. Lian, H.-H. Chen, and L.-G. Chen, “Com-putation
reduction technique for lossy JPEG2000 encoding through EBCOT
tier-2 feedback processing,” in Proc. IEEE International Conference on Im-age
Processing, vol. 3, Rochester, New York, Sept. 2002, pp. 85—88.
[48] “CS6510: JPEG2000 encoder data sheet, ds6510 v1.0,” Amphion Semicon-ductor
Ltd, Aug. 2002. [Online]. Available: http://www.amphion.com
[49] “CS6590: JPEG2000 codec preliminary product brief, pb6590
v1.0,” Amphion Semiconductor Ltd, Oct. 2002. [Online]. Available:
http://www.amphion.com
[50] H.-C. Fang, T.-C. Wang, C.-J. Lian, T.-H. Chang, and L.-G. Chen, “High
speed memory efficient EBCOT architecture for JPEG 2000,” in Proc.
IEEE International Symposium on Circuits and Systems (ISCAS’03), vol. 2,
Bangkok, Thailand, May 2003, pp. 736—739.
[51] J.-S. Chiang, Y.-S. Lin, and C.-Y. Hsieh, “Efficient pass-parallel architec-ture
for EBCOT in JPEG2000,” in Proc. IEEE International Symposium on
Circuits and Systems (ISCAS’02), vol. 1, Phoenix, USA, May 2002, pp. 773—
776.
[52] H.-H. Chen, C.-J. Lian, T.-H. Chang, and L.-G. Chen, “Analysis of EBCOT
decoding algorithm and its VLSI implementation for JPEG 2000,” in Proc.
IEEE Int. Symp. Circuits and Systems (ISCAS’02), vol. 4, Phoenix, AZ, May
2002, pp. 329—332.
[53] A. Ouri and T. Chen, Multimedia Systems, Standards, and Networks.New
Yoork, NY: Marcel Dekker, Inc., 2000, ch. 10.
[54] S. Lawson and J. Zhu, “Image compression using wavelets and JPEG2000:
A tutorial,” Electronics & Communication Engineering Journal, vol. 14, pp.
112—121, June 2002.
[55] J. M. Shapiro, “Embedded image coding using zerotree of wavelet coeffi-cients,”
IEEE Trans. Signal Processing, vol. 41, pp. 3445—3462, Dec. 1993.
[56] J. Bae and V. K. Prasanna, “A fast and area-efficient VLSI architecture for
embedded image coding,” in Proc. IEEE International Conference on Image
processing (ICIP’95), Washington D.C., USA, Oct. 1995, pp. 23—26.
[57] B. Vanhoof, M.Peon, G. Lafruit, J. Bormans, L. Nachtergaele, and
I. Bolsens, “A scalable architecture for MPEG-4 wavelet quantization,” Jour-nal
of VLSI Signal Processing, vol. 23, no. 1, pp. 93—107, ? 1999.
[58] J. M. Shapiro, “A fast technique for identifying zerotrees in the EZW algo-rithm,”
in Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP’96), Atlanta, Georgia, May 1996, pp. 1444—
1448.
[59] G. Knowles, “A single chip wavelet zero-tree processor for video compres-sion
and decomposition,” in (DATE’98), Feb. 1998, pp. 61—65.
[60] B. Vanhoof, M. Peon, and G. Lafruit, “A scalable architecture for MPEG-4
embedded zero tree coding,” in Proc. IEEE Custom Integrated Circuits
Conference (CICC’99), San Diego, CA, May 1999, pp. 61—65.
[61] L. Nachtergaele, B. Vanhoof, G. L. M. Peon, J. Bormans, and I. Bolsens,
“Implementation of a scalable MPEG-4 wavelet-based visual texture com-pression
system,” in Proc. Design Automation Conference (DAC’99),New
Orleans, LA, June 1999, pp. 333—336.
[62] L. minn Ang, H. N. Cheung, and K. Eshraghian, “VLSI architecture for sig-nificance
map coding of embedded zerotree wavelet coefficients,” in Proc.
IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS’98), Chi-angmai,
Thailand, Nov. 1998, pp. 627—630.
[63] I. Sodagar, H.-J. Lee, P. Hatrack, and Y. Q. Zhang, “Scalable wavelet cod-ing
for synthetic/natural hybrid images,” IEEE Trans. Circuits Syst. Video
Technol., vol. 9, pp. 224—254, mar 1999.
[64] J. Liang, “The predictive embedded zerotree wavelet (PEZW) coder: Low
complexity image coding with versatile functionality,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP’99), Phoenix, Arizona, Mar. 1999, pp. 1413—1416.
[65] Z.-L. Yang and L.-G. Chen, “Architecture design for the tree-depth scan-ning
of MPEG-4 still texture coding,” Master’s thesis, Dept. of Elec. Eng.,
National Taiwan University, Taipei, Taiwan, R.O.C., June 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊