|
[1] Information Technology─Digital compression and coding of continuous-tone still images, ISO/IEC 10918-1 and ITU-T Recommendation T.81 Std., 1994. [2] JPEG 2000 Part I, ISO/IEC JTC1/SC29/WG1 Final Committee Draft, Rev. 1.0, Mar. 2000. [3] Information Technology─Generic Coding of Audio-Visual Objects., ISO/IEC FDIS 14496-2. [4] W. Kou, Digital image compression─algorithms and standards. Norwell, MA: Kluwer academic, 1995. [5] Y. Q. Shi and H. Sun, Eds., Image and Video Compression for Multimedia Engineering. Boca Raton, Florida: CRC Press, 2000. [6] R. Fano, “Transmission of information,” Research Lab. Electronics, MIT, Tech. Rep. 65, 1949. [7] J. Fenlason and R. Stallman, “GNU gprof─the GNU profiler,” Free Sort-ware Foundation, Inc.,” Manual, 2000. [8] P. Kuhn, “A complexity analysis tool: iprof (version 0.41),” ISO/IEC JTC1/SC29/WG11, Dublin (Ireland), Doc. M3551, July 1998. [9] “WILDCARD and FIREBIRD FPGA reconfigurable boards,” Annapolis Micro Systems, Inc. [Online]. Available: http://www.annapmicro.com/ [10] JPEG File Interchange Format, Version 1.02, Eric Hamilton, C-Cube Mi-crosystems Std., Sept. 1992. [11] “EXIF: Exchangeable image file format,” EXIF.org. [Online]. Available: http://www.exif.org/ [12] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard. New York: Van Nostrand Reinhold, 1992. [13] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards─Algorithms and Architectures, 2nd ed. Norwell, MA: Kluwer Academic, 2000. [14] N. Ahmed, T. Natarajan, and K. R. Rao, “On image processing and a discrete cosine transform,” IEEE Trans. Comput., vol. C-23, no. 1, pp. 90—93, Jan. 1974. [15] W. K. Pratt, Digital Image Processing, 2nd ed. New York: Wiley-Interscience, 1991. [16] “The independent JPEG group’s JPEG software,” Independent JPEG Group. [Online]. Available: http://www.ijg.org/ [17] A. Madisetti and J. Alan N. Willson, “A 100 MHz 2-D 8 ×8 DCT/IDCT processor for HDTV applications,” IEEE Trans. Circuits Syst. Video Tech-nol., vol. 5, no. 2, Apr. 1995. [18] G. S. Taylor and G. M. Blair, “Design for the discrete cosine transform in VLSI,” IEE Proc. Comput. Digit. Tech., vol. 145, no. 2, pp. 127—133, Mar. 1998. [19] M. Kovac and N. Rauganathan, “JAGUAR: A full pipelined VLSI architec-ture for JPEG image compression standard,” Proc. IEEE, vol. 83, no. 2, pp. 247—258, Feb. 1995. [20] H.-C. Chang, L.-G. Chen, Y.-C. Chang, and S.-C. Huang, “A VLSI architec-ture design of VLC encoder for high data rate video/image coding,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS’99), vol. 4, Florida, USA, May 1999, pp. 398—401. [21] M.-H. Chen, T.-K. Chen, Y.-C. Chen, J.-S. Pan, and Y.-S. Weng, “VLSI im-plementation of single chip JPEG codec,” in Proc. International Symposium on VLSI Technology, Systems, and Applications, 1993, pp. 189—193. [22] M. Bolton, R. Boulton, J. Martin, S. Ng, and S. Turner, “A complete single-chip implementation of the JPEG image compression standard,” in Proc. IEEE Custom Integrated Circuit Conference (CICC’91), 1991, pp. 12.2.1— 12.2.4. [23] P. Ruetz and P. Tong, “Method and apparatus for decoding Huffman codes,” U.S. Patent 5 254 991, Oct. 19, 1993. [24] S. H. Sun, S. H. Du, H. T. Yang, and S. J. Lee, “Design and implementation of a JPEG chip,” in Proc. Asia Pacific Conference on Multimedia Technology and Applications 2000, 2000, pp. 384—392. [25] D’Ortenzio and J. Remo, “DX JPEG Huffman decoder,” U.S. Patent 5 825 312, Oct. 20, 1998. [26] “AT76C101: JPEG image compression processor, datasheet, rev. 0751a-04/ 98,” ATMEL Corporation. [27] B. W. Y. Wei and T. H. Meng, “A parallel decoder of programmable Huffman codes,” IEEE Trans. Circuits Syst. Video Technol., vol. 5, pp. 175—178, Apr. 1995. [28] D. S. Taubman and M. W. Marcellin, JPEG2000 image compression funda-mentals, standards and practice. Norwell, MA: Kluwer Academic, 2002. [29] M. D. Adams, F. K. H. Man, and T. Ebrahimi, “JPEG 2000: The next gen-eration still image compression standard,” ISO/IEC JTC1/SC29/WG1, Doc. N1734, June 2000. [30] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE Signal Processing Magazine, pp. 36—58, Sept. 2001. [31] M. J. Gormish, D. Lee, and M. W. Marcellin, “JPEG 2000: overview, archi-tecture, and applications,” in Proc. IEEE International Conference on Image Processing (ICIP’00), vol. 2, Vancouver, BC, Canada, Sept. 2000, pp. 29— 32. [32] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An overview of JPEG-2000,” in Proc. IEEE Data Compression Conference (DCC’00), 2000, pp. 523—541. [33] J. F. Barda, “JPEG2000, the next millennium compression standard for still images,” in Proc. IEEE Int. Conf. Multimedia Computing and Systems (ICMCS’99), vol. 2. [34] D. Taubman and H. Labs, “Report on core experiment codeff22, EBCOT: Embedded block coding with optimized truncation,” ISO/IEC JTC1/SC29/WG1, Tech. Rep. N1020R, Oct. 1998. [35] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Trans. Image Processing, vol. 9, pp. 1158—1170, July 2000. [36] D. Taubman, E. Ordentlich, M. Weinberger, and G. Seroussi, “Embedded block coding in JPEG 2000,” Signal Processing: Image Communication, vol. 17, pp. 49—72, Jan. 2002. [37] K.-F. Chen, C.-J. Lian, H.-H. Chen, and L.-G. Chen, “Analysis and architec-ture design of EBCOT in JPEG2000,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’01), Sydney, Australia, May 2001, pp. 765—768. [38] “JPEG2000 encoder datasheet,” inSilicon Corporation, 2001. [Online]. Available: http://www.insilicon.com [39] “ADV-JP2000: JPEG2000 co-processor, preliminary technical data,” Analog Devices, Inc., 2001. [Online]. Available: http://www.analog.com [40] M. Vishwanath, R. Owens, and M. J. Irwin, “VLSI architectures for the discrete wavelet transform,” IEEE Trans. Circuits Syst. II, vol. 42, no. 5, pp. 305—316, may 1995. [41] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal wavelet construction,” in Proc. SPIE Wavelet Applications in Signal and Im-age Processing III, 1995, pp. 68—79. [42] J.-M. Jou, Y.-H. Shiau, and C.-C. Liu, “Efficient VLSI architectures for the biothogonal wavelet transform by filter bank and lifting scheme,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS’01), Syd-ney, Australia, May 2001, pp. 529—532. [43] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Efficient VLSI architectures of lifting-based discrete wavelet transform by systematic design method,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS’02), Phoenix, USA, May 2002, pp. 565—568. [44] JBIG Bi-Level Image Compression Standard, ISO/IEC 11544 and ITU-T Recommendation T.82 Std., 1993. [45] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Processing, vol. 1, pp. 205— 220, Apr. 1992. [46] C. Parisot, M. Antonini, and M. Barlaud, “EBWIC: a low complexity and efficient rate constrained wavelet image coder,” Proc. IEEE Int. Conf. on Image Processing, vol. 1, pp. 653—656, 2000. [47] T.-H. Chang, L.-L. Chen, C.-J. Lian, H.-H. Chen, and L.-G. Chen, “Com-putation reduction technique for lossy JPEG2000 encoding through EBCOT tier-2 feedback processing,” in Proc. IEEE International Conference on Im-age Processing, vol. 3, Rochester, New York, Sept. 2002, pp. 85—88. [48] “CS6510: JPEG2000 encoder data sheet, ds6510 v1.0,” Amphion Semicon-ductor Ltd, Aug. 2002. [Online]. Available: http://www.amphion.com [49] “CS6590: JPEG2000 codec preliminary product brief, pb6590 v1.0,” Amphion Semiconductor Ltd, Oct. 2002. [Online]. Available: http://www.amphion.com [50] H.-C. Fang, T.-C. Wang, C.-J. Lian, T.-H. Chang, and L.-G. Chen, “High speed memory efficient EBCOT architecture for JPEG 2000,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS’03), vol. 2, Bangkok, Thailand, May 2003, pp. 736—739. [51] J.-S. Chiang, Y.-S. Lin, and C.-Y. Hsieh, “Efficient pass-parallel architec-ture for EBCOT in JPEG2000,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS’02), vol. 1, Phoenix, USA, May 2002, pp. 773— 776. [52] H.-H. Chen, C.-J. Lian, T.-H. Chang, and L.-G. Chen, “Analysis of EBCOT decoding algorithm and its VLSI implementation for JPEG 2000,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’02), vol. 4, Phoenix, AZ, May 2002, pp. 329—332. [53] A. Ouri and T. Chen, Multimedia Systems, Standards, and Networks.New Yoork, NY: Marcel Dekker, Inc., 2000, ch. 10. [54] S. Lawson and J. Zhu, “Image compression using wavelets and JPEG2000: A tutorial,” Electronics & Communication Engineering Journal, vol. 14, pp. 112—121, June 2002. [55] J. M. Shapiro, “Embedded image coding using zerotree of wavelet coeffi-cients,” IEEE Trans. Signal Processing, vol. 41, pp. 3445—3462, Dec. 1993. [56] J. Bae and V. K. Prasanna, “A fast and area-efficient VLSI architecture for embedded image coding,” in Proc. IEEE International Conference on Image processing (ICIP’95), Washington D.C., USA, Oct. 1995, pp. 23—26. [57] B. Vanhoof, M.Peon, G. Lafruit, J. Bormans, L. Nachtergaele, and I. Bolsens, “A scalable architecture for MPEG-4 wavelet quantization,” Jour-nal of VLSI Signal Processing, vol. 23, no. 1, pp. 93—107, ? 1999. [58] J. M. Shapiro, “A fast technique for identifying zerotrees in the EZW algo-rithm,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’96), Atlanta, Georgia, May 1996, pp. 1444— 1448. [59] G. Knowles, “A single chip wavelet zero-tree processor for video compres-sion and decomposition,” in (DATE’98), Feb. 1998, pp. 61—65. [60] B. Vanhoof, M. Peon, and G. Lafruit, “A scalable architecture for MPEG-4 embedded zero tree coding,” in Proc. IEEE Custom Integrated Circuits Conference (CICC’99), San Diego, CA, May 1999, pp. 61—65. [61] L. Nachtergaele, B. Vanhoof, G. L. M. Peon, J. Bormans, and I. Bolsens, “Implementation of a scalable MPEG-4 wavelet-based visual texture com-pression system,” in Proc. Design Automation Conference (DAC’99),New Orleans, LA, June 1999, pp. 333—336. [62] L. minn Ang, H. N. Cheung, and K. Eshraghian, “VLSI architecture for sig-nificance map coding of embedded zerotree wavelet coefficients,” in Proc. IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS’98), Chi-angmai, Thailand, Nov. 1998, pp. 627—630. [63] I. Sodagar, H.-J. Lee, P. Hatrack, and Y. Q. Zhang, “Scalable wavelet cod-ing for synthetic/natural hybrid images,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 224—254, mar 1999. [64] J. Liang, “The predictive embedded zerotree wavelet (PEZW) coder: Low complexity image coding with versatile functionality,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’99), Phoenix, Arizona, Mar. 1999, pp. 1413—1416. [65] Z.-L. Yang and L.-G. Chen, “Architecture design for the tree-depth scan-ning of MPEG-4 still texture coding,” Master’s thesis, Dept. of Elec. Eng., National Taiwan University, Taipei, Taiwan, R.O.C., June 2000.
|