跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林益宗
研究生(外文):Yi-Tsung Lin
論文名稱:反應性射頻磁控濺鍍ZrO2薄膜電容器之研究
論文名稱(外文):Study on ZrO2 films by using RF reactive magnetron sputtering for MIM capacitors
指導教授:林明宏林明宏引用關係
指導教授(外文):Ming-Hong Lin
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:101
中文關鍵詞:金屬-絕緣層-金屬結構電容二氧化鋯高介電材料
外文關鍵詞:MIM capacitorZirconium oxideHigh-k
相關次數:
  • 被引用被引用:3
  • 點閱點閱:569
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
於本研究中,整體實驗可分為薄膜性質分析、電容元件製作以及電容元件之電性質分析等三部份;利用反應性射頻磁控濺鍍法沉積氧化鋯薄膜於不同結構之基板,包含SiO2/Si以及Cu/SiO2/Si兩種,並以XRD、ESCA、AFM、SEM以及TEM對薄膜進行各項量測與分析;而電容元件之製作方式則使用半導體產業以及印刷產業常應用之微影製程,最後再對電容元件進行C-V與I-V電性之量測與分析。
元件為Cu/ZrO2/Cu/Si sub.之MIM疊層結構,實驗中之薄膜皆以反應性射頻磁控濺鍍法所沉積;於元件之電性特徵中,當ZrO2薄膜厚度降低時,元件之電容密度與漏電流密度皆有所增加,且介電常數值隨薄膜厚度之降低而降低。而觀察與比較之後發現,薄膜厚度67nm之ZrO2介電層於100kHz頻率下,具有一2.547 f fF/μm2之電容密度以及於1V電壓下,一漏電流密度5.3110-5A/cm2。
In this study, ZrO2 thin films were grown on a SiO2/Si and Cu/SiO2/Si substrate using RF magnetron sputtering., and the ZrO2 films were analyzed using XRD, ESCA, AFM, SEM and TEM. The capacitor devices were synthesized by lithography process, which was used in semiconductor industry and PCB industry. For electrical properties, Keithley 236 Source-Measure Unit is used to measure the I-V curves, and the C-V curves are obtained by E4284A precision LCR meter.
Capacitor performance of ZrO2 dielectric films deposited on Cu metal electrodes to form MIM structures with Cu top electrodes is demonstrated. Both ZrO2 and Cu metal were synthesized by RF reactive magnetron sputtering. When the thickness of the film was reduced, the capacitance density and leakage current density increased. Furthermore, the dielectric constant was observed to decrease with decreasing film thickness. The dielectric and electrical properties of the 67 nm thickness ZrO2 films have the capacitance density of 2.547 fF/μm2 at 100 kHz and the leakage current density of 5.3110-5A/cm2 was achieved at 1V.
總目錄
中文摘要....................................................................................................................Ⅰ
英文摘要....................................................................................................................Ⅱ
誌謝..........................................................................................................................Ⅲ
總目錄........................................................................................................................Ⅳ
圖目錄........................................................................................................................Ⅶ
表目錄........................................................................................................................XI

第一章 緒論
1-1 背景......................................................................................................................1
1-2 研究動機..............................................................................................................3
第二章 理論基礎
2-1二氧化鋯之結構與性質.......................................................................................4
2-2二氧化鋯薄膜之製作與應用...............................................................................5
2-3薄膜電容之基本結構...........................................................................................6
2-4平板電容之基本原理...........................................................................................7
2-5介電材料之基本特性...........................................................................................9
2-4.1介電係數....................................................................................................9
2-4.2 介電強度...................................................................................................11
2-4.3 介電損失因子...........................................................................................11
2-5極化機制............................. .................................................................................11
2-5.1 主要之極化機制.......................................................................................12
2-5.2 溫度相依性...............................................................................................14
2-5.3 頻率相依性...............................................................................................14
2-6漏電流機制............................. .............................................................................15
2-7薄膜製程...............................................................................................................18
2-7.1 電漿理論...................................................................................................18
2-7.2 薄膜生長機制...........................................................................................21
2-7.3 物理氣相沉積法.......................................................................................22
2-7.4 化學氣相沉積法.......................................................................................29
2-7.5 溶-凝膠法..................................................................................................30
2-8薄膜與厚膜製程之差異 .....................................................................................32
2-9 MIMCap文獻回顧...............................................................................................34
2-9.1 以氧化鋯薄膜製作MIMCap...................................................................34
2-9.2 以氧化鉿薄膜製作MIMCap...................................................................34
2-9.3 以五氧化二鉭薄膜製作MIMCap...........................................................35
2-9.4 以鐵電性薄膜製作MIMCap...................................................................36
2-9.5 以疊層結構薄膜製作MIMCap...............................................................36
2-9.6 以其他氧化物薄膜製作MIMCap...........................................................37
第三章 實驗方法與步驟
3-1實驗流程與實驗規劃...........................................................................................38
3-2鍍膜設備...............................................................................................................40
3-3微影製程...............................................................................................................43
3-4薄膜性質分析與量測儀器...................................................................................44
3-5元件電性質之量測儀器與方法...........................................................................45
第四章 結果與討論
4-1薄膜性質之分析....................................................................................................47
4-1-1於Si基板上沉積氧化鋯薄膜………………………………....................47
4-1-1-1晶相分析.................................................................................................47
4-1-1-2微結構觀察與分析.................................................................................58
4-1-1-3薄膜化學組態分析.................................................................................62
4-1-1-4表面粗糙度分析.....................................................................................63
4-1-1-5薄膜片電阻量測.....................................................................................69
4-1-2於Cu/Si基板上沉積氧化鋯薄膜…...…………………………................70
4-1-2-1晶相分析.................................................................................................70
4-1-2-2微結構觀察與分析.................................................................................72
4-1-2-3薄膜化學組態分析.................................................................................74
4-1-2-3膜厚量測.................................................................................................75
4-1-2-4表面粗糙度分析.....................................................................................77
4-1-2-5薄膜片電阻量測.....................................................................................83
4-2 元件電性特徵分析...............................................................................................84
4-2-1電容-電壓特徵曲線(C-V Curve) ..............................................................84
4-2-2電流-電壓特徵曲線(I-V Curve) ................................................................88
第六章 結論..............................................................................................................89
參考文獻......................................................................................................................91











圖目錄
圖2-1氧化鋯之晶體結構...........................................................................................4
圖2-2氧化鋯之熱平衡相圖.......................................................................................5
圖2-3薄膜電容之基本結構.......................................................................................6
圖2-4平板電容器之基本結構...................................................................................8
圖2-5極化現象...........................................................................................................9
圖2-6 電子極化示意..................................................................................................12
圖2-7離子極化示意圖...............................................................................................12
圖2-8方向極化示意圖...............................................................................................13
圖2-9空間電荷極化示意圖.......................................................................................13
圖2-10極化機構與頻率之關係.................................................................................14
圖2-11蕭基特激發機構.............................................................................................16
圖2-12普爾-法蘭克機構............................................................................................17
圖2-13輝光放電之示意.............................................................................................20
圖2-14 薄膜生長機制示意........................................................................................22
圖2-15 基本濺射之示意............................................................................................23
圖2-16平面直流二極濺鍍之電漿撞擊示意圖.........................................................25
圖2-17射頻濺鍍沉積.................................................................................................26
圖2-18磁控濺鍍沉積.................................................................................................27
圖2-19反應性濺鍍沉積.............................................................................................28
圖2-20化學氣相沉積之反應過程.............................................................................30
圖2-21溶凝膠製程.....................................................................................................31
圖2-22網印過程之示意圖.........................................................................................33
圖3-1實驗流程圖.......................................................................................................39
圖3-2 反應性射頻磁控濺鍍系統..............................................................................41
圖3-3鍍膜流程圖.......................................................................................................42
圖3-4元件電性特徵之量測方式示意圖...................................................................46
圖4-1以不同濺鍍參數沉積ZrO2薄膜於Si基板之XRD繞射圖..........................50
圖4-2無偏壓與氧氬流量比10/90沉積ZrO2薄膜於Si基板之
TEM橫截面圖.................................................................................................51
圖4-3無偏壓與氧氬流量比10/90沉積ZrO2薄膜於Si基板之
TEM擇區繞射圖.............................................................................................51
圖4-4無偏壓與氧氬流量比10/90沉積ZrO2薄膜於Si基板之
TEM明視野影像圖.........................................................................................52
圖4-5無偏壓與氧氬流量比10/90沉積ZrO2薄膜於Si基板之
TEM暗視野影像圖.........................................................................................52
圖4-6無偏壓與氧氬流量比10/90沉積ZrO2薄膜於Si基板之
TEM高解析影像.............................................................................................53
圖4-7無偏壓與氧氬流量比70/30沉積ZrO2薄膜於Si基板之
TEM橫截面圖.................................................................................................54
圖4-8無偏壓與氧氬流量比70/30沉積ZrO2薄膜於Si基板之
TEM擇區繞射圖.............................................................................................54
圖4-9施加-200V偏壓與氧氬流量比10/90沉積ZrO2薄膜於Si基板之
TEM橫截面圖.................................................................................................55
圖4-10施加-200V偏壓與氧氬流量比10/90沉積ZrO2薄膜於Si基板之
TEM擇區繞射圖.............................................................................................55
圖4-11施加-200V偏壓與氧氬流量比10/90沉積ZrO2薄膜於Si基板之
TEM明視野影像圖.........................................................................................56
圖4-12施加-200V偏壓與氧氬流量比10/90沉積ZrO2薄膜於Si基板之
TEM暗視野影像圖.........................................................................................56
圖4-13施加-200V偏壓與氧氬流量比70/30沉積ZrO2薄膜於Si基板之
TEM橫截面圖...............................................................................................57
圖4-14施加-200V偏壓與氧氬流量比70/30沉積ZrO2薄膜於Si基板之
TEM擇區繞射圖...........................................................................................57
圖4-15無偏壓與不同氧氬流量比沉積ZrO2薄膜於Si基板之
SEM表面形貌圖...........................................................................................60
圖4-16施加-200V偏壓以及不同氧氬流量比沉積ZrO2薄膜於Si基板之
SEM表面形貌圖...........................................................................................60
圖4-17無施加偏壓與不同氧氬流量比沉積ZrO2薄膜於Si基板之
SEM橫截面圖...............................................................................................61
圖4-18施加-200V偏壓與不同氧氬流量比沉積ZrO2薄膜於Si基板之
SEM橫截面圖...............................................................................................61
圖4-19沉積ZrO2薄膜於Si基板之膜厚數據圖......................................................62
圖4-20 沉積ZrO2薄膜於Si基板薄膜之核層光電子能譜圖.................................63
圖4-21 沉積ZrO2薄膜於Si基板薄膜表面粗糙度之數據圖.................................64
圖4-22無施加偏壓與不同氧氬流量比沉積ZrO2薄膜於Si基板之
薄膜表面粗糙度分析....................................................................................66
圖4-23施加-200V偏壓與不同氧氬流量比沉積ZrO2薄膜於Si基板之
薄膜表面粗糙度分析....................................................................................68
圖4-24 沉積ZrO2薄膜於Si基板之薄膜片電阻率數據圖......................................69
圖4-25以不同濺鍍參數沉積ZrO2薄膜於Cu/Si基板之XRD繞射圖.................71
圖4-26無偏壓與不同氧氬流量比沉積ZrO2薄膜於Cu/Si基板之
SEM表面形貌圖...........................................................................................73
圖4-27施加-200V偏壓以及不同氧氬流量比沉積ZrO2薄膜於Cu/Si基板之
SEM表面形貌圖...........................................................................................73
圖4-28不同濺鍍條件沉積ZrO2薄膜於Cu/Si基板之SEM橫截面………...........74
圖4-29無偏壓與不同氧氬流量比沉積ZrO2薄膜於Cu/Si基板
薄膜之核層光電子能譜圖............................................................................75
圖4-30施加-200V偏壓與不同氧氬流量比沉積ZrO2薄膜於Cu/Si基板
薄膜之核層光電子能譜圖............................................................................75
圖4-31以不同濺鍍條件沉積沉積ZrO2薄膜於Cu/Si基板之膜厚數據圖............77
圖4-32沉積ZrO2薄膜於Cu/Si基板薄膜表面粗糙度之數據圖............................78
圖4-33無施加偏壓與不同氧氬流量比沉積ZrO2薄膜於Cu/Si基板之
薄膜表面粗糙度分析....................................................................................80
圖4-34施加-200V偏壓與不同氧氬流量比沉積ZrO2薄膜於Cu/Si基板之
薄膜表面粗糙度分析....................................................................................82
圖4-35沉積ZrO2薄膜於Cu/Si基板之薄膜片電阻率數據圖................................83
圖4-36 未施加偏壓與不同氧氬流量比之電容-電壓特徵曲線圖..........................85
圖4-37 施加-200V偏壓與不同氧氬流量比之電容-電壓特徵曲線圖...................86
圖4-38未施加偏壓與不同氧氬流量比之電容密度曲線圖.....................................87
圖4-39 施加-200V偏壓與不同氧氬流量比之電容密度曲線圖.............................87
圖4-40介電常數分佈圖.............................................................................................87
圖4-41 未施加偏壓與不同氧氬流量比之電流密度曲線圖....................................89
圖4-42 施加-200V偏壓與不同氧氬流量比之電流密度曲線圖.............................89








表目錄
表1-1電容之主要用途.............................................................................................. 2
表2-1 極化機構相關性質之比較..............................................................................15
表2-2漏電流機制之模型……...................................................................................15
表2-3電漿內產生之反應...........................................................................................19
表2-4各種材料之濺射率...........................................................................................24
表2-5惰性氣體對不同材料之濺射率.......................................................................24
表3-1氧化鋯薄膜之濺鍍參數...................................................................................43
表4-1以不同濺鍍條件沉積沉積ZrO2薄膜於Cu/Si基板之膜厚數據表..............76
參考文獻
[1]Y. Zou, Jeffery Suhling, R. Wayne Johnson, R. C. Jaeger, and A. K. M. Mian,
“In-Situ Stress State Measurements During Chip-on-Board Assembly,” IEEE
Transactions on Electronics Packaging Manufacturing, Vol. 22, No. 1, pp.
38-52 (1999)
[2]Marcus Lankford, Kyle Davis, R. Wayne Johnson, M. E. Baginski, and Hayden
Hontgas,“Electromagnetic Compatibility Design and Performance of Multichip
Modules,”International Journal of Microcircuits and Electronic Packaging, Vol
20,No. 3, 3rd Qtr. , pp. 333-338(1997)
[3]R. Wayne Johnson, T. L. Phillips, R. C. Jaeger, S. F. Hahn and D. C. Burdeaux,
“Multichip Thin Film Technology on Silicon,” IEEE Transactions on Components,
Hybrids, and Manufacturing Technology, Vol. 12, No. 2, pp. 185-194(1989)
[4]William D. Brown, R. Wayne Johnson and John L. Evans, “Automotive Multichip Modules”, Advanced Electronic Packaging, Ch. 15, IEEE Press(1998)
[5]R. Wayne Johnson, Iwona Turlik and Philip Garrou, McGraw-Hill, “Multichip
Module Technology”, Ch. 8, New York, NY (1997)
[6]R. Wayne Johnson, D. A. Doane and Paul Franzon, Van Nostrand Reinhold
“Multichip Module Technologies and Alternatives - The Basics,” Ch. 16, New York, NY (1992)
[7]P .Muralt, J. P. Seidel, “Thin Film Sputter Deposition for Hybrid Applications” Vacuum, Vol. 41, No. 4-6, pp. 1400-1402 (1990)
[8]P .Muralt, J. P. Seidel, A.G. Balzers, “Actual problems of thin film deposition for hybrid applications” Electronic Manufacturing Technology Symposium, pp. 251-254(1989)
[9]白蓉生,”內嵌式電容器之發展(Development of Enbedded Capacitors )”,印刷電路信息(2002)
[10]許志雄,”小兵立大功-電子陶瓷”, 科學發展第375期, pp.28-33(2004)
[11]盧慶儒, “被動元件產品及技術發展趨勢(4)”, Digitime(2006)
[12]李賢學, 周更生, “陶瓷被動元件”, 科學發展第359期(2002)
[13]藍偉庭, 林正益, “整合型元件技術發展動向及其在可攜式產品之應用” (2004)
[14]Joseph Dougherty, John Galvagni, Larry Marcanti, Peter Sandborn, Rick Charbonneau, Robert Sheffield,“The NEMI Roadmap Perspective on Integrated Passives” (2004)
[15]www.eettaiwan.com/ARTP_8800166955_0.HTM
[16]Chit-Hwei Ng, Chaw-Sing Ho, Shao-Fu Sanford Chu, and Shi-Chung Sun,” MIM Capacitor Integration for Mixed-Signal/RF Applications”, IEEE Transactions on electron devices, Vol. 52, No. 7, pp.1399 (2005)
[17]P. Zucher, P. Alluri, P. Chu, A. Duvallet, C. Happ, R. Henderson, J.Mendoca, M. Kim, M. Petras, M. Raymond, T. Remmel, D. Roberts,B. Steimle, J. Stipanuk, S. Straub, T. Sparks, M. Tarabbia, H. Thibieroz,and M. Miller, “Integration of thin filmMIMcapacitors and resistors into copper metallization based RF-CMOS and Bi-CMOS technologies,” in IEDM Tech. Dig., pp. 153–156(2000)
[18]International Technology Roadmap for Semiconductors (ITRS), RF & A/MS Technologies for Wireless Chapter, pp. 8–10(2004)
[19]S. B. Chen, C. H. Lai, A. Chin, J. C. Hsieh, and J. Liu, “High-density MIM capacitors using Al O and AlTiOx Dielectrics,” IEEE Electron Device Lett., Vol. 23, pp. 185–187(2002)
[20]M.Y. Yang, C.H. Huang, A. Chin, C. Zhu, M.F. Li,and D.-L. Kwong, "High density MIM capacitors using AlTaOx dielectrics," IEEE Electron Device Letters, Vol. 24, no. 5, pp. 306-308(2003)
[21]K. C. Chiang, C. H. Lai, Albert Chin, T. J. Wang, H. F. Chiu, Jiann-Ruey Chen, S. P. McAlister, and C. C. Chi,” Very High-Density (23 fF/um2) RF MIM Capacitors Using high-k TaTiO as the Dielectric”, IEEE Electron device letters, Vol. 26, No. 10, pp.728(2005)
[22]Ezhilvalavan S.; Tseng T.-Y.,”Electrical properties of Ta2O5 thin films deposited on Cu ,” Thin Solid Films, Vol 360, pp. 268-273(6) (2000)
[23]S. J. Kim, B. J. Cho, M. B. Yu, M. -F. Li, 2, Y. -Z. Xiong, C. Zhu, A. Chin, and D. -L. Kwong, “High Capacitance Density (> 17 fF/µm2) Nb2O5-based MIM Capacitors for Future RF IC Applications,” Symp. on VLSI Technology, pp. 56-57, Japan(2005)
[24]S. J. Kim, B. J. Cho, M. F. Li, X. Yu, C. Zhu, A. Chin, and D. L. Kwong, “PVD HfO2 for high-precision mim capacitor applications,” IEEE Electron Device Lett. 24, pp. 387-389(2003)
[25]H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, and W. K. Choi, “A high performance MIM capacitor using HfO2 dielectrics,” IEEE Electron Device
Lett., vol. 23, pp. 514–516(2002)
[26]S.-Y. Lee, H. Kim, P. C. Mclntyre, K. C. Saraswat, and J.-S. Byun, “Atomic layer deposition of ZrO2 on W for metal–insulator–metal capacitor application,” Appl. Phys. Lett., vol. 82, no. 17, pp. 2874–2876(2003)
[27]Young Hun Jeong , Jong Bong Lim, Jae Chul Kim, Sahn Nahm, Ho-Jung Sun, Hwack Joo Lee, “Microstructure and dielectric properties of amorphous BaSm2Ti4O12 thin films for MIM capacitor,” Journal of the European Ceramic Soc., pp. 2849–2853(2007)
[28]K. C. Chiang, J. W. Lin, H. C. Pan, C. N. Hsiao, W. J. Chen, H. L. Kao, I . J . Hsieh, and Albert Chin, “Very High Density (44 fF/mm2) SrTiO3 MIM Capacitors for RF Application,” J. Electrochem. Soc., vol. 153, p. H214(2007)
[29]Fleming RM, Lang DV, Jones CDW, Steigerwald ML, Murphy DEW, Alers GB, Wong YH, Van Dover RB, Kwo JR, Sergent AM. “Defect dominated charge transport in amorphous thin films Ta2O5 ,” Journal of the Appl Phys., 88(2):850
(2000)
[30]Dae Gyu Park,”Method of manufacturing a semiconductor device utilizing a(Al2O3)X-(TiO2)1-X gate dielectric film,” US Patent Issued (2002)
[31]J. Robertson, ”Schottky barrier heights and band offsets of high-k dielectrics,” Integrated Ferroelectrics, Vol. 32, pp. 251-258(2001)
[32]Y. M. Chiang, D. Birnie Ш, W. D. Kingery, “Physical Ceramics:Principles for ceramic science and engineering,” Wiley, New York(1997)
[33]T. B. Massalski, J. L. Murray, L. H. Bennet, H. Baker, “Binary Alloy Phase Diagrams,” American Society for metals, Ohio(1987)
[34]J. Zhu, Z.G. Liu, ”Structure and dielectric properties of ultra-thin ZrO2 films for high-k gate dielectric application prepared by pulsed laser deposition,” Appl. Phys. A 78, pp.741–744(2004)
[35]S. Harasek , H.D. Wanzenboeck , B., Basnar, J. Smoliner, J. Brenner, H. Stoeri, E. Gornik, E. Bertagnolli, “Metal-organic chemical vapor deposition and nanoscale characterization of zirconium oxide thin films,” Thin Solid Films , pp.199–204(2002)
[36]Jang-Hyuk Hong, Woo-Jong Choi, Jae-Min Myoung, ”Properties of ZrO2 dielectric layers grown by metalorganic molecular beam epitaxy,” Microelectronic Engineering , Vol.70, pp.35–40(2003)
[37]S.H. Jeonga, I.S. Baea, Y.S. Shina, S.-B. Leea, H.-T. Kwakb, J.-H. Booa, “Physical and electrical properties of ZrO2 and YSZ high-k gate dielectric thin films grown by RF magnetron sputtering,” Thin Solid Films Vol. 475, pp.354– 358(2005)
[38]Fu-Chien Chiu, Zhi-Hong Lin, Che-Wei Chang, Chen-Chih Wang, Kun-Fu Chuang,Chih-Yao Huang, Joseph Ya-min Lee, and Huey-Liang Hwang, “Electron conduction mechanism and band diagram of sputter-deposited Al/ZrO2 /Si structure,”Journal of applied physics(2005)
[39]D. H. Kuo, C .H. Chien, “Growth and properties of sputtered zirconia and zirconia-silica thin films,”Thin Solid Films Vol. 429, pp.40-45(2003)
[40]J. Zhu, Z.G. Liu “Structure and dielectric properties of ultra-thin ZrO2 films for high-k gate dielectric application prepared by pulsed laser deposition,” Appl. Phys. A 78, 741–744(2004)
[41]吳朗, ”電工材料,” 全華科技圖書, 民86
[42]李春顯, 許煙明, 陳忠仁, ”材料科學與工程,” 高立圖書, 民83
[43]D. W. Richerson, “Modern ceramic engineering,” Marcel Dekker, (1992)
[44]詹國定, 朱建國, ”電子與光電子材料,” 新文京圖書, 民91
[45]W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Introduction to ceramics,” second edition, Wiley, (1976)
[46]S. M. Sze,” Physics of Semiconductor Devices”, 2nd ed., Wiley, New York, (1981)
[47]C. Chaneliere and J. L. Autran, “Conduction mechanism in Ta2O5/SiO2 and
Ta2O5/Si3N4 stacked structures on Si”, J. Appl. Phys., 86, 480 (1999)
[48]W. J. Zhu, Tso-Ping Ma, Takashi Tamagawa, J. Kim, and Y. Di, “Current transport in Metal/Hafnium/Oxide/Silicon structure,” IEEE Electron Device Lett. Vol. 23, No. 2 (2002)
[49]Takeshi Yamaguchi, Hideki Satake, and Noburu Fukushima, “Band diagram and carrier conduction mechanisms in ZrO2 MIS structures,” IEEE Trans Electron Devices Vol. 51, No. 5 (2004)
[50]Mattox, D. M,Westwood, N.J, “Handbook of physical vapor deposition (PVD)
Processing : film formation, adhesion, surface preparation and contamination control,” Noyes Publications(1998)
[51]M. Harsdorff, “Thin influence of charged point defects and contamination of substrate surface on nucleation”, Thin Solid Films, Vol. 116, pp.55(1984)
[52]Rointan F.Bunshah,”Handbook of deposition technologies for films and coatings”,Noyes Publications(1994)
[53]柯賢文, ”表面與薄膜處理技術,” 全華圖書, 民94
[54]John E. Mahan, ”Physical vapor deposition of thin films,” New York : Wiley
(2000)
[55]Sundgren, J. E. m Johansson, B. O. ,and karlsson, S. E. “Kinetics of Nitride Formation on Titanium Targets during Reactive Sputtering,” Surf. Sci., 128:265(1983)
[56]Logothetidis, S., Alexandrou, I., and kokkou, S, “Optimization of TiN Thin Film Grouth with In Situ Monitoring : The Effect of Biasvoltage and Nitrogen Flow Rate,”Surf. Coat. Technol., 80(1-2):60(1996)
[57]Sproul, W. D., Rudnik, P.J., and Graham, M. E.,”The Effect of Nitrogen Partial Pressures, Deposition Rate and Substrate Bias Potential on the Hardness and Texture of Reactively Sputtered TiN Coatings,” Surf. Coat. Technol., 39/40:355(1989)
[58]Rhode, S. L.,”Sputter Deposition” Surface Engineering, Vol. 5, pp.573, ASM Handbook(1994)
[59]Sproul, W. D., Rudnik, P.J., and Graham, M. E., Gogol, C. A., and Műller, R. M., “Advances in Partial Pressure Control Applied to Reactive Sputtering,” Surf. Coat. Technol., 39/40:499(1989)
[60]http://www.siliconfareast.com
[61]Hugh O. Pierson,”Handbook of chemical vapor deposition (CVD):principles, technology,and applications,”Norwich, Noyes Publications(1999)
[62]http://www.chemat.com
[63]Sumio Sakka, ” Handbook of sol-gel science and technology [electronic resource] : processing, characterization, and applications,” Kluwer Academic Publishers(2005)
[64]陳力俊, ”微電子材料與製程,” 中國材料科學學會圖書, 民89
[65]International Technology Roadmap for Semiconductors, San Jose,
CA: Semiconductor Industry Association(2005)
[66] Xiongfei Yu, Chunxiang Zhu, Hang Hu, Albert Chin ,M. F. Li , Byung Jin Cho, Dim-Lee Kwong, P. D. Foo, and Ming Bin Yu, “High-Density MIM Capacitor (13 fF/um2) Using ALD HfO2 Dielectrics,” IEEE Electron device letters, Vol. 24, No. 2(2003)
[67]Tsu-Hsiu Perng, Chao-Hsin Chien, Ching-Wei Chen, Peer Lehnen, hun-Yen Chang,” High-density MIM capacitors with HfO2 dielectrics,” Thin Solid Films Vol.469–470, pp. 345– 349(2004)
[68]S. Ezhilvalavan1, Tseung-Yuen Tseng “Electrical properties of Ta2O5 thin films deposited on Cu” Thin Solid Films Vol. 360, pp.268-273(2000)
[69]Bo-Yun Jang , Beom-Jong Kim, Young-Hun Jeong, Sahn Nahm , Ho-Jung Sun, Hwack-Ju Lee,“Structure and dielectric properties of BaTi4O9 thin films for RF-MIM capacitor applications,” J. Electroceram Vol. 17, pp.387–391(2006)
[70]K. C. Chiang, J. W. Lin, H. C. Pan, C. N. Hsiao, W. J. Chen, H. L. Kao, I. J. Hsieh, and Albert Chin, ” Very High Density 44 fF/um2 SrTiO3 MIM Capacitors for RF Applications,” Journal of The Electrochemical Society, Vol.154, pp.H214-H216(2007)
[71]Ch. Wenger, G. Lippert, R. Sorge, T. Schroeder, A. U. Mane,G. Lupina, J. Dabrowski, P. Zaumseil, X. Fan, L. Oberbeck,U. Schroeder, and H.-J. Müssig,
”High-Quality Al2O3/Pr2O3/Al2O3 MIM Capacitors for RF Applications,”IEEE Transactions on electron devices, Vol. 53, No. 8(2006)
[72]Byung Du Ahn, Jong Hoon Kim, Hong Seong Kang, Choong Hee Lee,
Sang Hoon Oh, Gun Hee Kim, Dong Hua Li, Sang Yeol Lee,”Structural, electrical and optical properties of GZO/HfO2/GZO transparent MIM capacitors,”Materials Science in Semiconductor Processing9, pp.1119–1124(2006)
[73]Ch. Wenger, J. Da˛browski, P. Zaumseil, R. Sorge, P. Formanek, G. Lippert,
H.-J. Müssig, “First investigation of metal–insulator–metal (MIM) capacitor using Pr2O3 dielectrics” Materials Science in Semiconductor Processing 7, pp.227–230 (2004)
[74]Kyoung Pyo Hong, Kyung-Hoon Cho, Young Hun Jeong, Sahn Nahm, Chong-Yun Kang, and Seok-Jin Yoon,”Investigation on the Electric Properties of Bi1.5ZnNb1.5O7 Thin Films Grown on TiN Substrate for MIM Capacitors” IEEE Electron device letters, Vol. 29, No. 4(2008)
[75]Aita CR, J. Vac. Sci. Technol, p.1540-1547(1993)
[76]T. Kimuer and T. Goto, “Thermal conductivities of yttria-stabilized zirconia films measured by a laser-heating ac method”, The 2nd International Conference on Technological Advances of Thin Films and Surface Coatings & The 1st International Conference on Nanotechnology, Meritus Mandarin, Singapore(2004)
[77]K. Koski, J. Hölsä, and P. Juliet, “properties of zirconium oxide thin films deposited by pulsed reactive magnetron sputtering”, Surface and Coatings Technology, Vol.120-121, p.303-312(1999)
[78]S. B. Amor, B. Rogier, G. Baud, M. Jacquet, and M. Nardin, “Characterization of zirconia films deposited by r.f. magnetron sputtering”, Materials Science and Engineering, B57, p.28-39(1998)
[79]P. Gao, L. J. Meng, M. P. dos Santos, V. Teixeira, and M. Andritschky, “Characterisation of ZrO2 films prepared by rf reactive sputtering at different O2 concentrations in the sputtering gases”, Vacuum, Vol.56, p.143-148(2000)
[80]M. P. Seah, ”Pure element sputtering yields using 500-1000 eV argon ions”, Thin Solid Films, Vol.81, p.279-287(1981)
[81]XPS Handbook of the Elements and Native Oxides, XPS International, Inc, 3-13
-1-702 Kamiasao Asao-ku, Kawasaki, Japan, 215-0021, (www.xpsdata.com/PDF
/zr no.pdf)
[82]E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous and M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films”, J. Vac. Sci. Technol. A.ll, p.580(1993)
[83]A.P. Huang, P.K. Chu, H. Yan and M. K. Zhu, “Dielectric properties enhancement of ZrO2 thin films induced by substrate biasing”, Vacuum, (2005)
[84]A.P. Huang and P.K. Chu, “Microstructural improvement of sputtered ZrO2 thin films by substrate biasing”, Materials Science and Engineering, B. 121, 244-247 (2005)
[85]A.P. Huang, P.K. Chu, H. Yan, M.K. Zhu, “Improvement of interfacial and dielectric properties of sputtered Ta2O5 thin films by substrate biasing and the underlying mechanism”, J. Vac. Sci., B. 23 (2): 566-569 (2005)
[86]Hoon Sang Choi, Kwang Soo Seol, Do Young Kim, Jun Sang Kwak, Chang-Sik Son, In-Hoon Choi, “Thermal treatment effects on interfacial layer formation between ZrO2 thin films and Si substrates”, J. Vac. Sci., p.310-316 (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top