跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉吉昌
研究生(外文):Yeh,Ji-Chang
論文名稱:以電噴霧法製備TiO2/Graphene Oxide複合材料不織布
論文名稱(外文):Fabrication of TiO2/Graphene Oxide Composite Nonwoven Fabrics by Electrospraying
指導教授:粘譽薰
指導教授(外文):Nien,Yu-Hsun
口試委員:粘譽薰吳知易何志松
口試委員(外文):Nien,Yu-HsunWu,Tzi-YiHo,Chih-Sung
口試日期:2017-06-27
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:104
中文關鍵詞:靜電噴霧氧化石墨烯二氧化鈦複合材料聚對苯二甲酸乙二酯不織布纖維
外文關鍵詞:ElectrosprayingGraphene oxideTitanium dioxideCompositesPolyethylene terephthalateNonwoven fabric
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功地使用靜電噴霧法將TiO2/graphene oxide (GO)和polyester (PET)不織布結合。首先,我們配置3種不同比例的TiO2-GO,使用XRD、Raman、UV-Vis、DLS分析其性質,為了找出光催化能力最佳的TiO2/GO複合材料,我們將P25(商用光觸媒)和我們的樣品在日光燈照射下進行光降解及暗吸附亞甲基藍(MB)實驗。實驗結果顯示我們所開發的光觸媒有最佳的光催化能力。
將我們所開發的光觸媒透過使用靜電噴霧均勻噴灑在塗佈PU樹酯的PET不織布。從表面型態研究觀察,我們所開發的光觸媒成功地沉積在不織布表面。該纖維經過 4小時超音波水洗測試擁只損失總重3.08 wt%,表現出卓越的附著力。TiO2/GO/-PET不織布透過在日光燈照射下進行MB光降解和暗吸附實驗,其測試結果顯示一天的總降解率為96.4%,光降解率約66.9%,並發現使用靜電噴霧法有明顯有提升光催化能力,主要是因為靜電噴霧法有效改善顆粒的團聚現象,增加光催化比表面積。經過3次光催化循環測試總降解率分別為96.4%、80.7%、78.1%,證實我們的TiO2/GO/PET不織布擁有絕佳的光催化能力及耐久性。

In present study‚we successfully combine TiO2/GO composite with PET nonwoven fabrics by electrospraying. First‚we prepare various TiO2/GO composite and analyze chemical properties of various TiO2/GO composite by XRD、Raman、UV-Vis、DLS‚in order to find the best photocatalysis ability of TiO2/GO composite. We compare the photocatalysis and adsorption ability of P25(commercial photocatalyst) with our innovative photochatalyst in fluorescent light. The results confirm that our innovative photochatalyst has the best photocatalysis ability.
The TiO2/GO composite uniformly is sprayed on the surface of PET nonwoven fabrics by electrospraying‚ Morphological studies reveal that the TiO2/GO uniformly is deposited as clusters on the surface of PET nonwoven fabrics. Our TiO2/GO/PET nonwoven fabrics just loss 3.08 wt% after ultrasonic water treatment for 4 hours. The results confirm that our fabrics have an excellent adhesive force between TiO2/GO and PET nonwoven fabrics. The total methylene blue removal and photodegradation rates of TiO2/GO/PET nonwoven fabrics are 96.4% and 66.9%, respectively in fluorescent light for 1 day. It can be observed that TiO2/GO photocatalytic activity is getting well by electrospraying due to decreasing agglomeration phenomenon and increasing specific surface area. The fastening ability of TiO2/GO composite on PET nonwoven fabric is also investigated. The total methylene blue removal rates of TiO2/GO/PET nonwoven fabric for 3 times of repeated photocatalysis experiments are 96.4%, 80.7% and 78.1%, respectively. Our fabric exhibits excellent durability and can be reused.

摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 xi
第1章 序論 1
1.1前言 1
1.2光催化 2
1.3研究動機與目的 3
第2章 文獻回顧 4
2.1半導體特性 4
2.1.1本質半導體(Intrinsic semiconductor) 4
2.1.2異質半導體(Extrinsic semiconductor) 6
2.2光催化半導體 9
2.3二氧化鈦光觸媒 9
2.4 市售P25粉末 11
2.5奈米材料 12
2.5.1奈米材料的定義與特性 12
2.5.2石墨烯特性與介紹 14
2.6 光觸媒固定載體 16
2.6.1 玻璃纖維 16
2.6.2 活性碳 16
2.6.3 二氧化矽材料 17
2.6.4 聚合物材料 17
2.6.5 其他材料載體 17
2.7 光觸媒固定方式 18
2.7.1 Sol-gel溶膠-凝膠法 18
2.7.2 熱處理方法(Thermal treatment method) 19
2.7.3 化學氣相沉積(Chemical vapor deposition) 20
2.7.4 電泳沉積(Electrophorectic deposition) 21
2.7.5 靜電紡絲(Electrospinning) 22
2.7.6靜電噴霧(Electrospraying) 24
2.8不織布 28
2.9 聚對苯二甲酸乙二酯 ( Polyethylene terephthalate ) 29
第3章實驗內容與方法 32
3.1 實驗藥品 32
3.2實驗儀器設備 34
3.3分析儀器設備 36
3.4實驗流程 38
3.4.1尋找最佳電噴液步驟 38
3.4.2 PG9%-PET不織布製作 39
3.5實驗溶液配置步驟及最佳比例 39
3.5.1 氧化石墨(Graphite Oxide)製備 39
3.5.2 Graphite Oxide/P25 電噴液 40
3.5.3 製備Graphite Oxide/P25的PET不織布 40
3.6基本性質測驗 41
3.6.1傅里葉轉換紅外光譜(FT-IR) 41
3.6.2 X光繞射分析儀(XRD) 41
3.6.3顯微拉曼光譜儀(Raman) 41
3.6.4粒徑分析儀(Nano particle analyzer) 41
3.6.5場發射掃描式電子顯微鏡(FE-SEM) 41
3.6.6 X光能量散佈光譜儀(EDS) 42
3.6.7熱重分析儀(Thermogravimetricc Analyzer) 42
3.6.8附著性測試(Adhesion Testing) 42
3.6.9紫外光可見光光譜儀(UV-Vis) 42
第4章結果與討論 45
4.1氧化石墨烯(Graphene Oxide)檢測 46
4.1.1 氧化石墨烯(GO)XRD分析 46
4.1.2 氧化石墨烯(GO)FT-IR分析 48
4.1.3氧化石墨烯(GO)Raman 分析 50
4.2 TiO2/Graphene Oxide複合材料檢測 52
4.2.1 不同比例TiO2/Graphene Oxide複合材料XRD分析 52
4.2.2 不同比例TiO2/Graphene Oxide複合材料Raman分析 53
4.2.3 不同比例TiO2/Graphene Oxide複合材料UV-Vis光譜 56
4.2.4 不同比例TiO2/Graphene Oxide複合材料粒徑分析 58
4.2.5亞甲基藍(MB)的光降解和暗吸附定量分析實驗 61
4.2.5.1 P25光降解和暗吸附定量分析實驗 62
4.2.5.2 PG6%光降解和暗吸附定量分析實驗 65
4.2.5.3 PG9%光降解和暗吸附定量分析實驗 68
4.2.5.4 PG12%光降解和暗吸附定量分析實驗 71
4.3 PG9%-PET不織布纖維實驗分析 74
4.3.1 PG9%-PET不織布纖維SEM和EDS分析 74
4.3.2 纖維表面的複合光觸媒定量測試:TGA 78
4.3.3 PG9%-PET不織布纖維附著力測試實驗 80
4.3.4 電噴霧的PG9%顆粒尺寸分析 81
4.3.5 PG9%-PET纖維光降解和暗吸附實驗 82
4.3.6 PG9%-PET不織布光降解循環測試 85
第5章結論 86
參考文獻 87



1.Zhong, Lexuan and Fariborz Haghighat, Photocatalytic air cleaners and materials technologies – Abilities and limitations. Building and Environment, 2015. 91: p. 191-203.
2.Seppänen, Olli A. and William Fisk, Some Quantitative Relations between Indoor Environmental Quality and Work Performance or Health. HVAC&R Research, 2006. 12(4): p. 957-973.
3.Taiwan Association Of Sick-building Consultants. Available from: http://www.twasbc.org/main02_2.php.
4.Cai, Yongqing and Yuan Ping Feng, Review on charge transfer and chemical activity of TiO2: Mechanism and applications. Progress in Surface Science, 2016. 91(4): p. 183-202.
5.Xu, Feng, Jing Chen, Liyong Guo, Shuangying Lei, and Yaru Ni, In situ electrochemically etching-derived ZnO nanotube arrays for highly efficient and facilely recyclable photocatalyst. Applied Surface Science, 2012. 258(20): p. 8160-8165.
6.Yao, Shunyu, Xu Zhang, Fengyu Qu, Ahmad Umar, and Xiang Wu, Hierarchical WO3 nanostructures assembled by nanosheets and their applications in wastewater purification. Journal of Alloys and Compounds, 2016. 689: p. 570-574.
7.Yang, So Young, Yeon Sik Choo, Soonhyun Kim, Sang Kyoo Lim, Jaesang Lee, and Hyunwoong Park, Boosting the electrocatalytic activities of SnO2 electrodes for remediation of aqueous pollutants by doping with various metals. Applied Catalysis B: Environmental, 2012. 111: p. 317-325.
8.Thakur, Suman, Tolendra Kshetri, Nam Hoon Kim, and Joong Hee Lee, Sunlight-driven sustainable production of hydrogen peroxide using a CdS–graphene hybrid photocatalyst. Journal of Catalysis, 2017. 345: p. 78-86.
9.Arslan, Idil, Isil Akmehmet Balcioglu, and Detlef W. Bahnemann, Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts. Applied Catalysis B: Environmental, 2000. 26(3): p. 193-206.
10.Razavizadeh, Mahmoud and Masoud Jamshidi, Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET. Applied Surface Science, 2016. 379: p. 114-123.
11.William D Callister, Jr. & David G. Rethwisch, 材料科學與工程. Third ed. 2009: 歐亞書局.
12.馬立宜、張晉瑜、周炯彤、陳君庭. 科學Onilne-半導體 〈Semiconductor〉.
13.Ryu, Su-Yeol, Jae Woo Chung, and Seung-Yeop Kwak, Dependence of photocatalytic and antimicrobial activity of electrospun polymeric nanofiber composites on the positioning of Ag–TiO2 nanoparticles. Composites Science and Technology, 2015. 117: p. 9-17.
14.Nakata, Kazuya and Akira Fujishima, TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012. 13(3): p. 169-189.
15.Bet-moushoul, E., Y. Mansourpanah, Kh Farhadi, and M. Tabatabaei, TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chemical Engineering Journal, 2016. 283: p. 29-46.
16.林明獻, 太陽電池技術入門. Third ed.: 全華圖書.
17.Antonio Castro, Neto, Guinea Francisco, and Peres Nuno Miguel, Drawing conclusions from graphene. Physics World, 2006. 19(11): p. 33.
18.Lim, L. L. P., R. J. Lynch, and S. I. In, Comparison of simple and economical photocatalyst immobilisation procedures. Applied Catalysis A: General, 2009. 365(2): p. 214-221.
19.Sun, Peng, Ruiyang Xue, Wang Zhang, Imran Zada, Qinglei Liu, Jiajun Gu, Huilan Su, Zhijian Zhang, Jianzhong Zhang, and Di Zhang, Photocatalyst of organic pollutants decomposition: TiO2/glass fiber cloth composites. Catalysis Today, 2016. 274: p. 2-7.
20.Shan, Ang Ying, Tinia Idaty Mohd Ghazi, and Suraya Abdul Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General, 2010. 389(1): p. 1-8.
21.Martins, Alessandro C., André L. Cazetta, Osvaldo Pezoti, João R. B. Souza, Tao Zhang, Eduardo J. Pilau, Tewodros Asefa, and Vitor C. Almeida, Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceramics International, 2017. 43(5): p. 4411-4418.
22.Kapridaki, Chrysi, Luís Pinho, Maria J. Mosquera, and Pagona Maravelaki-Kalaitzaki, Producing photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings. Applied Catalysis B: Environmental, 2014. 156: p. 416-427.
23.Hwang, Hong Seo, Jeong Beom Lee, Jiwon Jung, Seyoung Lee, Ji Heon Ryu, and Seung M. Oh, Highly flexible TiO2-coated stainless steel fabric electrode prepared by liquid-phase deposition. Journal of Power Sources, 2016. 330: p. 204-210.
24.Huang, Haibao, Gaoyuan Liu, Yujie Zhan, Ying Xu, Haoxian Lu, Huiling Huang, Qiuyu Feng, and Muyan Wu, Photocatalytic Oxidation of Gaseous Benzene under VUV Irradiation over TiO2/Zeolites Catalysts. Catalysis Today, 2017. 281, Part 3: p. 649-655.
25.Todorova, N., T. Giannakopoulou, S. Karapati, D. Petridis, T. Vaimakis, and C. Trapalis, Composite TiO2/clays materials for photocatalytic NOx oxidation. Applied Surface Science, 2014. 319: p. 113-120.
26.Li, Yanxiang, Lixia Cao, Lei Li, and Chuanfang Yang, In situ growing directional spindle TiO2 nanocrystals on cellulose fibers for enhanced Pb2+ adsorption from water. Journal of Hazardous Materials, 2015. 289: p. 140-148.
27.Boyer, Steven M., Jian Liu, Sandy Zhang, Matthew I. Ehrlich, Danielle L. McCarthy, Linyue Tong, Jared B. DeCoste, William E. Bernier, and Wayne E. Jones, The role of ruthenium photosensitizers in the degradation of phenazopyridine with TiO2 electrospun fibers. Journal of Photochemistry and Photobiology A: Chemistry, 2016. 329: p. 46-53.
28.Chen, Yongjun and Dionysios D. Dionysiou, TiO2 photocatalytic films on stainless steel: The role of Degussa P-25 in modified sol–gel methods. Applied Catalysis B: Environmental, 2006. 62(3): p. 255-264.
29.Pant, Hem Raj, Madhab Prasad Bajgai, Ki Taek Nam, Yun A. Seo, Dipendra Raj Pandeya, Seong Tshool Hong, and Hak Yong Kim, Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: A multifunctional nanocomposite textile material. Journal of Hazardous Materials, 2011. 185(1): p. 124-130.
30.Chong, Meng Nan, Zhen Yang Tneu, Phaik Eong Poh, Bo Jin, and Rupak Aryal, Synthesis, characterisation and application of TiO2–zeolite nanocomposites for the advanced treatment of industrial dye wastewater. Journal of the Taiwan Institute of Chemical Engineers, 2015. 50: p. 288-296.
31.Lee, Heejin, Min Young Song, Jongsoo Jurng, and Young-Kwon Park, The synthesis and coating process of TiO2 nanoparticles using CVD process. Powder Technology, 2011. 214(1): p. 64-68.
32.Gatford, Joanna. Plant & Food Research. 2008; Available from: http://www.plantandfood.co.nz/.
33.Pignatello, Rosario, Advances in Biomaterials Science and Biomedical Applications. Intech.
34.Jaworek, A. and A. T. Sobczyk, Electrospraying route to nanotechnology: An overview. Journal of Electrostatics, 2008. 66(3): p. 197-219.
35.Ramasundaram, Subramaniyan, Aseom Son, Mingizem Gashaw Seid, Sujin Shim, Sang Hyup Lee, Yun Chul Chung, Changha Lee, Jaesang Lee, and Seok Won Hong, Photocatalytic applications of paper-like poly(vinylidene fluoride)–titanium dioxide hybrids fabricated using a combination of electrospinning and electrospraying. Journal of Hazardous Materials, 2015. 285: p. 267-276.
36.Ramasundaram, Subramaniyan, Mingizem Gashaw Seid, Jae Wan Choe, Eun-Ju Kim, Yun Chul Chung, Kangwoo Cho, Changha Lee, and Seok Won Hong, Highly reusable TiO2 nanoparticle photocatalyst by direct immobilization on steel mesh via PVDF coating, electrospraying, and thermal fixation. Chemical Engineering Journal, 2016. 306: p. 344-351.
37.蘇清源, 石墨烯氧化物之特性與應用前景. 物理雙月刊, 2011. 33: p. 163-167.
38.Jia, Li, Lini Dong, and Liande Zhu, Stripping voltammetry at graphene oxide: The negative effect of carbonaceous debris. Applied Materials Today, 2017. 8: p. 26-30.
39.Hamandi, M., G. Berhault, C. Guillard, and H. Kochkar, Reduced graphene oxide/TiO2 nanotube composites for formic acid photodegradation. Applied Catalysis B: Environmental, 2017. 209: p. 203-213.
40.Zhu, Menghua, Xin Li, Weiwei Liu, and Ying Cui, An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene–TiO2 composite photoanodes. Journal of Power Sources, 2014. 262: p. 349-355.
41.Wang, Donghai, Daiwon Choi, Juan Li, Zhenguo Yang, Zimin Nie, Rong Kou, Dehong Hu, Chongmin Wang, Laxmikant V. Saraf, Jiguang Zhang, Ilhan A. Aksay, and Jun Liu, Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. ACS Nano, 2009. 3(4): p. 907-914.
42.Chen, Juanrong, Fengxian Qiu, Wanzhen Xu, Shunsheng Cao, and Huijun Zhu, Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Applied Catalysis A: General, 2015. 495: p. 131-140.
43.Ramesha, G. K., A. Vijaya Kumara, H. B. Muralidhara, and S. Sampath, Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid and Interface Science, 2011. 361(1): p. 270-277.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top