跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施碩恩
研究生(外文):Shou-En Shih
論文名稱:氧化銅奈米顆粒修飾多種硫化銅結構之非酶葡萄糖感測器
論文名稱(外文):Study of Various CuS Nanostructures Decorated with CuO Nanoparticles for Non-Enzymatic Glucose Sensors
指導教授:莊豐任
指導教授(外文):Feng-Renn Juang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:157
中文關鍵詞:非酶葡萄糖感測器氧化銅修飾電鍍生長法硫化銅奈米結構
外文關鍵詞:CuO modificationnon-enzymatic glucose sensorelectroplatingCuS nanostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
  本研究主要探討多種硫化銅結構複合氧化銅奈米顆粒,在ITO基板上完成非酶葡萄糖感測元件。感測材料形貌的變化及薄膜厚度對感測器之靈敏度與偵測範圍有很大的影響。本研究利用電鍍在ITO基板上製備不同的硫化銅奈米結構,再以射頻濺鍍系統修飾氧化銅奈米顆粒,完成氧化銅奈米顆粒/硫化銅奈米結構之雙層感測材料。透過電鍍溶液濃度及電鍍時間的調變,來控制奈米材料形貌及樣品的厚度。並分析單層與雙層複合結構之差異,提升元件對葡萄糖之感測表現。

實驗結果指出,以0.15M五水合硫代硫酸鈉作為電鍍溶液,電鍍時間控制為900秒時所製備的硫化銅結構,對於葡萄糖具有最佳的感測能力。其靈敏度為132.39μAmM-1cm-2。在表面修飾氧化銅奈米顆粒後,其靈敏度更能進一步提升至139.86μAmM-1cm-2。結果顯示氧化銅奈米顆粒/硫化銅奈米結構之雙層複合結構對葡萄糖有較高的感測能力外,其感測範圍更廣。對於應用在生醫檢測方面,具有相當大的潛力。
In this thesis, various copper sulfide (CuS) nanostructures composited with copper oxide (CuO) nanoparticles have been discussed. Nanocomposites are grown on the ITO substrates for non-enzymatic glucose sensing. Different morphologies and thicknesses of the sensing materials have significant effects to the sensitivity and the detection range of the sensors. Various CuS nanostructures are electroplated on the ITO substrate in this study. CuO nanoparticles are decorated on the surface of CuS for modification by RF sputtering system. The CuO/CuS nanocomposites are completed as a double-layered sensing material. By adjusting the concentration of the plating solution and changing the plating time, the morphology and the thickness of CuS can be controlled. We analyze the differences of the sensing material before and after the CuO modification. Sensing performances of the devices to glucose are also been compared.

Based on the results, the sensing material CuS has the best performances by fabricating with 0.15M sodium thiosulfate pentahydrate under plating time of 900 s. Its sensitivity is 132.39μAmM-1cm-2. After the CuO modification, the sensitivity is further improved to 139.86μAmM-1cm-2. The results show that the CuO/CuS nanocomposites have higher sensing ability and wider detection range to glucose. It has great potential for biomedical detection.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xvii
第一章 緒論 1
1-1 前言 1
1-2 電化學感測器比較 2
1-3 材料介紹 5
1-3-1 硫化銅(CuS) 5
1-3-2 氧化銅(CuO) 5
1-4 論文架構 6
第二章 理論分析 7
2-1 奈米結構生長原理 7
2-1-1 電鍍生長法 7
2-1-2 射頻磁控濺鍍成長法 8
2-2 材料成長機制 8
2-2-1 硫化銅(CuS)生長原理 8
2-2-2 氧化銅(CuO)生長原理 10
2-3電化學感測原理 10
2-3-1 電化學法原理 10
2-3-2 非酶感測器 12
2-4電化學分析 13
2-4-1 循環伏安法 13
2-4-2 時變安培法 14
2-5 電化學電極原理 14
2-5-1 工作電極 14
2-5-2 參考電極 15
2-5-3 輔助電極 15
2-6 材料分析原理 16
2-6-1 掃描式電子顯微鏡(FE-SEM) 16
2-6-2 X光繞射儀(XRD) 16
2-6-3 能量色散X射線光譜(EDS) 17
2-7 材料感測機制 17
2-7-1 硫化銅對葡萄糖感測機制 17
2-7-2 氧化銅對葡萄糖感測機制 18
第三章 實驗方法與儀器 20
3-1 實驗藥品與材料 20
3-2 薄膜分析儀器 21
3-2-1 掃描式電子顯微鏡(FE-SEM) 21
3-2-2 X光繞射儀(XRD) 21
3-2-3 能量色散X射線光譜(EDS) 22
3-3 電化學工作站 22
3-3-1 電化學分析 22
3-3-2 電鍍生長 22
3-4 製程步驟 23
3-4-1 基板清洗 23
3-4-2 電鍍生成法成長硫化銅 24
3-4-3 濺鍍沉積法修飾氧化銅 25
第四章 結果與討論 26
4-1 生長參數 26
4-1-1 硫化銅生長參數 26
4-1-2 氧化銅生長參數 26
4-2 材料參數調變分析 27
4-2-1 硫化銅成長結構結果與討論 27
4-2-2 氧化銅複合硫化銅成長結構結果與討論 32
4-3 電化學循環伏安法分析 35
4-3-1 硫化銅感測葡萄糖分析 35
4-3-2 氧化銅複合硫化銅感測葡萄糖分析 39
4-3-3 掃描速率分析 42
4-4 電化學時變安培法分析 43
4-4-1 硫化銅感測葡萄糖靈敏度分析 43
4-4-2 氧化銅複合硫化銅感測葡萄糖靈敏度分析 55
4-4-3 干擾物量測 61
4-5 研究結果比較 61
第五章 結論與未來展望 63
5-1 實驗結論 63
5-2 未來展望 64
參考文獻 65
附表 72
附圖 76
[1]2017全球糖尿病地圖。
[2]行政院衛生署中央健康保險局
[3]彰化基督教醫院健康檢查中心
[4]藍御維,“氧化鋅摻雜鋁薄膜修飾金電極之電流式葡萄糖生物感測器”,國立雲林科技大學光電工程研究所,碩士論文,2009。
[5]Clark Jr, Leland C., and Champ Lyons. “Electrode systems for continuous monitoring in cardiovascular surgery.”Annals of the New York Academy of sciences 102.1 (1962): 29-45.
[6]K.W.Lin,Y.K.Huang,H.L.Su,and T.Z.Hsieh,”In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis”,Analytica Chimica Acta,Vol.619,pp.115-151,2008
[7]Tian, Kun, Megan Prestgard, and Ashutosh Tiwari. “A review of recent advances in nonenzymatic glucose sensors.” Materials Science and Engineering: C 41 (2014): 100-118.
[8]Zhu, Zhigang, et al. “A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene.” Sensors 12.5 (2012): 5996-6022.
[9]Park, Sejin, Hankil Boo, and Taek Dong Chung. “Electrochemical non-enzymatic glucose sensors.”Analytica chimica acta 556.1 (2006): 46-57.
[10]Bergveld, Piet. “Development of an ion-sensitive solid-state device for neurophysiological measurements.” IEEE Transactions on Biomedical Engineering(1970): 70-71.
[11] P. Bergveld, IEEE Sensor Conference Toronto, pp.1-26, 2003.
[12]謝振傑,“光纖生物感測器”,中華民國物理學會物理雙月刊(廿八卷四期),2006,pp.704-710。
[13]Choi, Martin MF. “Progress in enzyme-based biosensors using optical transducers.” Microchimica Acta 148.3-4 (2004): 107-132.
[14]劉盈村,“光纖式表面電漿子共振生醫微感測器”,台灣大學醫學工程研究所,碩士論文,2001。
[15]李坤易,“高感度葡萄糖生物感測器之研究”,國立雲林科技大學化學工程系碩士班,碩士論文,2006。
[16]S. Ya. Kuchmii,A. V. Korzhak,A. E. Raevskaya,A. I. Kryukov “Catalysis of the Sodium Sulfide Reduction of Methylviologene by CuS Nanoparticles”
[17]K.R. Nemade, S.A. Waghuley, “Band gap engineering of CuS nanoparticles for artificial photosynthesis”Materials Science in Semiconductor Processing Volume 39, November 2015, Pages 781-785
[18]R.S. Christy, J.T.T. Kumaran, J. Non Oxide ,” Phase transition in CuS nanoparticles” Glass, 6 (2014), pp. 13-22
[19]M.Saranya, C. Santhosh, R.Ramachandran, A.N. Grace,J.Nanotechnol,2014(2014),pp. 321571-321579
[20]Shankara S. Kalanurand Hyungtak Seo“Tuning plasmonic properties of CuS thin films via valence band filling”
[21]Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu,”Hydrophilic Cu 9S 5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo”,ACS Nano, 5 (2011), pp. 9761-9771
[22]Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P.Alivisatos, “Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals”,NanoLett., 8 (2008), pp. 2551-2555
[23]H.J. Hovel, Semiconductors and Semimetals, Solar Cells, vol. 11, Academic Press, New York, 1975, p. 89.
[24]P.K. Nair, M.T.S. Nair, J. Phys. D Appl. Phys. 24 (1991) 83.
[25]M.T.S. Nair, P.K. Nair, Semiconduct. Sci. Technol. 4 (1989) 191.
[26]L. Qian, J. Mao, X. Tian, H. Yuan, D. Xiao “In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor”,Sens. Actuators, 176 (2013), pp. 952-959
[27]C. Tan, Y. Zhu, R. Lu, P. Xuea, C. Bao, X. Liu, Z. Fei, Y. Zhao, 91 (2005) 44–47.
[28]Z. Peralta-Inga, P. Lane, J.S. Murray, S.Boyd, M.E. Grice, C.J. Oconnor, P. Poli zer,“Characterization of Surface Electrostatic Potentials of some (5,5) and (n,1) Carbon and Boron/Nitrogen Model Nanotubes”,Nano Lett., 3 (2003), pp. 21-28
[29]Mageshwari K, Mali SS, Hemalatha T, Sathyamoorthy R,Pati PS. ,”Low temperature growth of CuS nanoparticles by reflux condensation method.”, Progress in Solid State Chemistry 39 (2011) 108-113.
[30]Dhasade SS, Patil JS, Kim JH, Han SH, Rath MC, Fulari VJ.,“Synthesis of CuS nanorods grown at room temperature by electrodeposition method.’’ Mater Chem Phys (2012) 353-358
[31]Chen YC, Shi JB, Wu C, Chen CJ, Lin YT, Wu PF. “Fabrication and optical properties of CuS nanowires by sulfuring method.” Materials Letters 62 (2008) 1421–1423.
[32]Huang J, Wang Y, Gu C, Zhai M. ,“Large scale synthesis of uniform CuS nanotubes by a sacrificial templating method and their application as an efficient photocatalyst.”, Materials Letters 99 (2013) 31–34.
[33]Basu M, Sinha AK, Pradhan M, Sarkar S, Negishi Y, Pal G,“Evolution of hierarchical hexagonal stacked plates of CuS from liquid-liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting.”, Environ. Sci. Technol. 2010, 44, 6313–6318
[34]M.B. Sigman, A. Ghezelbash, T. Hanrath, A.E. Saunders, F. Lee, B.A. Korgel, J. Am. Chem. Soc. 125 (2003) 16050.
[35]H. Zhang, G. Wu, X. Chen, Langmuir 21 (2005) 4281.
[36]Q. Lu, F. Gao, D. Zhao, Nano Lett. 2 (2002) 725.
[37]J. Gong, S. Yu, H. Qian, L. Luo, X. Liu, Chem. Mater. 18 (2006) 2012.
[38]H. Zhu, X. Ji, D. Yang, Y. Ji, H. Zhang, Microporous Mesoporous Mater. 80 (2005) 153.
[39]Z. Liu, J. Liang, D. Xu, Y. Qian, Chem. Commun. 7 (2004) 2724.
[40]S. Jiao, L. Xu, K. Jiang, D. Xu, Adv. Mater. 18 (2006) 1174.
[41]Z. Liu, D. Xu, J. Liang, J. Shen, S. Zhang, Y. Qian, J. Phys. Chem. B 109 (2005) 10699.
[42]P. Zhang, L. Gao, J. Mater. Chem. 13 (2003) 2007.
[43]S. Gorai, D. Ganguli, S. Chaudhuri, Cryst. Growth Design 5 (2005) 875.
[44]X. Chen, Z. Wang, Z. Wang, R. Zhang, X. Liu, W. Lin, Y. Qian, J. Cryst. Growth 263 (2004) 570.
[45]Y. Ni, H. Liu, F. Wang, G. Yin, J. Hong, X. Ma, Z. Xu, Appl. Phys. A Mater. Sci. Process. 79 (2004) 2007.
[46]S. Wang, F. Guo, L. Shi, Y. Peng, X. Liu, Y. Zhang, Y. Qian, J. Mater. Chem. 14 (2004) 2489.
[47]L. C. Jiang, W. D. Zhang Biosens, “A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode,” Bioelectron., pp. 1402–1407, 2010.
[48]S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu, Q. Cai, “A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor,” Talanta, pp.157–163, 2011.
[49]G. Wang, Y. Wei, W. Zhang, X. Zhang, B. Fang, L. Wang Microchim, “Robust Stability of Uncertain Takagi-Sugeno Fuzzy Systems with Time-varying Input-delay ,” Acta, pp. 87–92, 2010.
[50]N. Q. Dung, D. Patil, H. Jung, D. Ki Biosens, “A high-performance nonenzymatic glucose sensor made of CuO–SWCNT nanocomposites,” Bioelectron., pp.280–286, 2013.
[51]Z. J. Zhuang, X. D. Su, H. Y. Yuan, Q. Sun, D. Xiao, M. M. F. Choi, “An improved sensitivity nonenzymatic glucose sensor based on a CuO nanowire modified Cu electrode ,” Analyst, pp. 126–132, 2008.
[52]“Chemical deposition method for metal chalcogenide thin films”R.S. Mane, C.D. Lokhande, Materials Chemistry and Physics 65 (2000) 1-31
[53]“VLSI製造技術”,高立圖書股份有限公司,1995。
[54]C. Nascu, I. Pop, V. Ionescu, E. Indrea, I. Bratu, Mater. Lett. 32 (1997) 73.
[55]S.Y. Wang, W. Wang, Z.H. Lu, Mater. Sci. Eng. B 103 (2003) 184.
[56]R.D. Engelken, H.E. McCloud, J. Electrochem. Soc. 132 (1985) 567.
[57]E. Fatas, T. Garcia, C. Ontemoyer, A. Media, E.G. Gamerevo, F. Arjona, Mater. Chem. Phys. 12 (1985) 121.
[58]P. Pramanick, M.A. Akther, P.K. Basu, J. Mater. Sci. Lett. 6 (1987) 1277.
[59]K.M. Gadave, C.D. Lokhande, Thin Solid Films 229 (1993) 1.
[60]I. Grozdanov, C.K. Barlingay, S.K. Dey, M. Ristov, M. Najdoski, Thin Solid Films 250 (1994) 67.
[61]B. Rezig, S. Duchemin, F. Guastavino, Sol. Energy Mater. 6 (1979) 53.
[62]H.S. Randhawa, R.F. Bunshah, D.G. Brock, B.M. Basol, O.M. Staffsudd, Sol. Energy Mater. 6 (1982) 445.
[63]郭寶財,“以因子實驗設計分析乙二環戊二烯亞鐵修飾碳糊電極之反應參數對偵測過氧化氫的應答電流之影響及其應用於葡萄糖生醫感測器之研究”,南台科技大學化學工程研究所,碩士論文,2007。
[64]Park, Sejin, Taek Dong Chung, and Hee Chan Kim. "Nonenzymatic glucose detection using mesoporous platinum." Analytical chemistry 75.13 (2003): 3046-3049.
[65]Bai, Yu, Yingying Sun, and Changqing Sun. "Pt–Pb nanowire array electrode for enzyme-free glucose detection." Biosensors and Bioelectronics 24.4 (2008): 579-585.
[66]Bard, Allen J., et al. Electrochemical methods: fundamentals and applications. Vol. 2. New York: wiley, 1980.
[67]王柏欽,“利用修改之水熱法合成出海葵狀氧化鋅奈米結構應用於高敏感度的膽固醇生物感測器”,國立台南大學電機工程學系,碩士論文,2014。
[68]Choi, Martin MF. "Progress in enzyme-based biosensors using optical transducers." Microchimica Acta 148.3-4 (2004): 107-132.
[69]劉盈村,“光纖式表面電漿子共振生醫微感測器”,台灣大學醫學工程研究所,碩士論文,2001。
[70]李坤易,“高感度葡萄糖生物感測器之研究”,國立雲林科技大學化學工程系碩士班,碩士論文,2006。
[71]HowlRn T. EveNsJ, r. nNoJ unrrHA . KonNenr,U.S. GeologicaSl uruey,R eston,V irginia 22092,American Mineralogist, Volume 61, pages 996-1N0, 1976
[72]Huang, Jianfei, et al. "Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection." ACS applied materials & interfaces 6.10 (2014): 7055-7062.
[73]Li, Yancai, et al. "Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor." Sensors and Actuators B: Chemical 206 (2015): 735-743.
[74]N. Q. Dung, D. Patil, H. Jung, D. Kim, “A high-performance nonenzymatic glucosesensor made of CuO–SWCNT nanocomposites, ”Biosens.Bioelectron, pp.280–286, 2013.
[75]J. Yang, L. C. Jiang, W. D. Zhang, S. Gunasekaran, “A highly sensitive non-enzymaticglucose sensor based on a simple two-step electrodeposition of cupric oxide(CuO) nanoparticles onto multi-walled carbon nanotube arrays, ” Talanta, pp.25–33, 2010.
[76]Yang, Yu Jun, and Shengshui Hu. "Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide." Electrochimica Acta 55.10 (2010): 3471-3476.
[77]X. Zhang, L. Wang, R. Ji, L. Yu, G. Wang, Nonenzymatic glucose sensor based on Cu–Cu2S nanocomposite electrode, Electrochem. Commun. 24 (2012) 53–56.
[78]Y.J. Yang, J. Zi, W. Li, Enzyme-free sensing of hydrogen peroxide and glucoseat a CuS nanoflowers modified glassy carbon electrode, Electrochim. Acta 115(2014) 126–130.
[79]X. Zhang, G. Wang, A. Gu, Y. Wei, B. Fang, CuS nanotubes for ultrasensitive nonenzymatic glucose sensors, Chem. Commun. (2008) 5945–5947.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊