[1]2017全球糖尿病地圖。
[2]行政院衛生署中央健康保險局
[3]彰化基督教醫院健康檢查中心
[4]藍御維,“氧化鋅摻雜鋁薄膜修飾金電極之電流式葡萄糖生物感測器”,國立雲林科技大學光電工程研究所,碩士論文,2009。[5]Clark Jr, Leland C., and Champ Lyons. “Electrode systems for continuous monitoring in cardiovascular surgery.”Annals of the New York Academy of sciences 102.1 (1962): 29-45.
[6]K.W.Lin,Y.K.Huang,H.L.Su,and T.Z.Hsieh,”In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis”,Analytica Chimica Acta,Vol.619,pp.115-151,2008
[7]Tian, Kun, Megan Prestgard, and Ashutosh Tiwari. “A review of recent advances in nonenzymatic glucose sensors.” Materials Science and Engineering: C 41 (2014): 100-118.
[8]Zhu, Zhigang, et al. “A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene.” Sensors 12.5 (2012): 5996-6022.
[9]Park, Sejin, Hankil Boo, and Taek Dong Chung. “Electrochemical non-enzymatic glucose sensors.”Analytica chimica acta 556.1 (2006): 46-57.
[10]Bergveld, Piet. “Development of an ion-sensitive solid-state device for neurophysiological measurements.” IEEE Transactions on Biomedical Engineering(1970): 70-71.
[11] P. Bergveld, IEEE Sensor Conference Toronto, pp.1-26, 2003.
[12]謝振傑,“光纖生物感測器”,中華民國物理學會物理雙月刊(廿八卷四期),2006,pp.704-710。
[13]Choi, Martin MF. “Progress in enzyme-based biosensors using optical transducers.” Microchimica Acta 148.3-4 (2004): 107-132.
[14]劉盈村,“光纖式表面電漿子共振生醫微感測器”,台灣大學醫學工程研究所,碩士論文,2001。[15]李坤易,“高感度葡萄糖生物感測器之研究”,國立雲林科技大學化學工程系碩士班,碩士論文,2006。[16]S. Ya. Kuchmii,A. V. Korzhak,A. E. Raevskaya,A. I. Kryukov “Catalysis of the Sodium Sulfide Reduction of Methylviologene by CuS Nanoparticles”
[17]K.R. Nemade, S.A. Waghuley, “Band gap engineering of CuS nanoparticles for artificial photosynthesis”Materials Science in Semiconductor Processing Volume 39, November 2015, Pages 781-785
[18]R.S. Christy, J.T.T. Kumaran, J. Non Oxide ,” Phase transition in CuS nanoparticles” Glass, 6 (2014), pp. 13-22
[19]M.Saranya, C. Santhosh, R.Ramachandran, A.N. Grace,J.Nanotechnol,2014(2014),pp. 321571-321579
[20]Shankara S. Kalanurand Hyungtak Seo“Tuning plasmonic properties of CuS thin films via valence band filling”
[21]Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu,”Hydrophilic Cu 9S 5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo”,ACS Nano, 5 (2011), pp. 9761-9771
[22]Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P.Alivisatos, “Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals”,NanoLett., 8 (2008), pp. 2551-2555
[23]H.J. Hovel, Semiconductors and Semimetals, Solar Cells, vol. 11, Academic Press, New York, 1975, p. 89.
[24]P.K. Nair, M.T.S. Nair, J. Phys. D Appl. Phys. 24 (1991) 83.
[25]M.T.S. Nair, P.K. Nair, Semiconduct. Sci. Technol. 4 (1989) 191.
[26]L. Qian, J. Mao, X. Tian, H. Yuan, D. Xiao “In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor”,Sens. Actuators, 176 (2013), pp. 952-959
[27]C. Tan, Y. Zhu, R. Lu, P. Xuea, C. Bao, X. Liu, Z. Fei, Y. Zhao, 91 (2005) 44–47.
[28]Z. Peralta-Inga, P. Lane, J.S. Murray, S.Boyd, M.E. Grice, C.J. Oconnor, P. Poli zer,“Characterization of Surface Electrostatic Potentials of some (5,5) and (n,1) Carbon and Boron/Nitrogen Model Nanotubes”,Nano Lett., 3 (2003), pp. 21-28
[29]Mageshwari K, Mali SS, Hemalatha T, Sathyamoorthy R,Pati PS. ,”Low temperature growth of CuS nanoparticles by reflux condensation method.”, Progress in Solid State Chemistry 39 (2011) 108-113.
[30]Dhasade SS, Patil JS, Kim JH, Han SH, Rath MC, Fulari VJ.,“Synthesis of CuS nanorods grown at room temperature by electrodeposition method.’’ Mater Chem Phys (2012) 353-358
[31]Chen YC, Shi JB, Wu C, Chen CJ, Lin YT, Wu PF. “Fabrication and optical properties of CuS nanowires by sulfuring method.” Materials Letters 62 (2008) 1421–1423.
[32]Huang J, Wang Y, Gu C, Zhai M. ,“Large scale synthesis of uniform CuS nanotubes by a sacrificial templating method and their application as an efficient photocatalyst.”, Materials Letters 99 (2013) 31–34.
[33]Basu M, Sinha AK, Pradhan M, Sarkar S, Negishi Y, Pal G,“Evolution of hierarchical hexagonal stacked plates of CuS from liquid-liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting.”, Environ. Sci. Technol. 2010, 44, 6313–6318
[34]M.B. Sigman, A. Ghezelbash, T. Hanrath, A.E. Saunders, F. Lee, B.A. Korgel, J. Am. Chem. Soc. 125 (2003) 16050.
[35]H. Zhang, G. Wu, X. Chen, Langmuir 21 (2005) 4281.
[36]Q. Lu, F. Gao, D. Zhao, Nano Lett. 2 (2002) 725.
[37]J. Gong, S. Yu, H. Qian, L. Luo, X. Liu, Chem. Mater. 18 (2006) 2012.
[38]H. Zhu, X. Ji, D. Yang, Y. Ji, H. Zhang, Microporous Mesoporous Mater. 80 (2005) 153.
[39]Z. Liu, J. Liang, D. Xu, Y. Qian, Chem. Commun. 7 (2004) 2724.
[40]S. Jiao, L. Xu, K. Jiang, D. Xu, Adv. Mater. 18 (2006) 1174.
[41]Z. Liu, D. Xu, J. Liang, J. Shen, S. Zhang, Y. Qian, J. Phys. Chem. B 109 (2005) 10699.
[42]P. Zhang, L. Gao, J. Mater. Chem. 13 (2003) 2007.
[43]S. Gorai, D. Ganguli, S. Chaudhuri, Cryst. Growth Design 5 (2005) 875.
[44]X. Chen, Z. Wang, Z. Wang, R. Zhang, X. Liu, W. Lin, Y. Qian, J. Cryst. Growth 263 (2004) 570.
[45]Y. Ni, H. Liu, F. Wang, G. Yin, J. Hong, X. Ma, Z. Xu, Appl. Phys. A Mater. Sci. Process. 79 (2004) 2007.
[46]S. Wang, F. Guo, L. Shi, Y. Peng, X. Liu, Y. Zhang, Y. Qian, J. Mater. Chem. 14 (2004) 2489.
[47]L. C. Jiang, W. D. Zhang Biosens, “A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode,” Bioelectron., pp. 1402–1407, 2010.
[48]S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu, Q. Cai, “A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor,” Talanta, pp.157–163, 2011.
[49]G. Wang, Y. Wei, W. Zhang, X. Zhang, B. Fang, L. Wang Microchim, “Robust Stability of Uncertain Takagi-Sugeno Fuzzy Systems with Time-varying Input-delay ,” Acta, pp. 87–92, 2010.
[50]N. Q. Dung, D. Patil, H. Jung, D. Ki Biosens, “A high-performance nonenzymatic glucose sensor made of CuO–SWCNT nanocomposites,” Bioelectron., pp.280–286, 2013.
[51]Z. J. Zhuang,  X. D. Su, H. Y. Yuan, Q. Sun, D. Xiao, M. M. F. Choi, “An improved sensitivity nonenzymatic glucose sensor based on a CuO nanowire modified Cu electrode ,” Analyst, pp. 126–132, 2008.
[52]“Chemical deposition method for metal chalcogenide thin films”R.S. Mane, C.D. Lokhande, Materials Chemistry and Physics 65 (2000) 1-31
[53]“VLSI製造技術”,高立圖書股份有限公司,1995。
[54]C. Nascu, I. Pop, V. Ionescu, E. Indrea, I. Bratu, Mater. Lett. 32 (1997) 73.
[55]S.Y. Wang, W. Wang, Z.H. Lu, Mater. Sci. Eng. B 103 (2003) 184.
[56]R.D. Engelken, H.E. McCloud, J. Electrochem. Soc. 132 (1985) 567.
[57]E. Fatas, T. Garcia, C. Ontemoyer, A. Media, E.G. Gamerevo, F. Arjona, Mater. Chem. Phys. 12 (1985) 121.
[58]P. Pramanick, M.A. Akther, P.K. Basu, J. Mater. Sci. Lett. 6 (1987) 1277.
[59]K.M. Gadave, C.D. Lokhande, Thin Solid Films 229 (1993) 1.
[60]I. Grozdanov, C.K. Barlingay, S.K. Dey, M. Ristov, M. Najdoski, Thin Solid Films 250 (1994) 67.
[61]B. Rezig, S. Duchemin, F. Guastavino, Sol. Energy Mater. 6 (1979) 53.
[62]H.S. Randhawa, R.F. Bunshah, D.G. Brock, B.M. Basol, O.M. Staffsudd, Sol. Energy Mater. 6 (1982) 445.
[63]郭寶財,“以因子實驗設計分析乙二環戊二烯亞鐵修飾碳糊電極之反應參數對偵測過氧化氫的應答電流之影響及其應用於葡萄糖生醫感測器之研究”,南台科技大學化學工程研究所,碩士論文,2007。[64]Park, Sejin, Taek Dong Chung, and Hee Chan Kim. "Nonenzymatic glucose detection using mesoporous platinum." Analytical chemistry 75.13 (2003): 3046-3049.
[65]Bai, Yu, Yingying Sun, and Changqing Sun. "Pt–Pb nanowire array electrode for enzyme-free glucose detection." Biosensors and Bioelectronics 24.4 (2008): 579-585.
[66]Bard, Allen J., et al. Electrochemical methods: fundamentals and applications. Vol. 2. New York: wiley, 1980.
[67]王柏欽,“利用修改之水熱法合成出海葵狀氧化鋅奈米結構應用於高敏感度的膽固醇生物感測器”,國立台南大學電機工程學系,碩士論文,2014。[68]Choi, Martin MF. "Progress in enzyme-based biosensors using optical transducers." Microchimica Acta 148.3-4 (2004): 107-132.
[69]劉盈村,“光纖式表面電漿子共振生醫微感測器”,台灣大學醫學工程研究所,碩士論文,2001。
[70]李坤易,“高感度葡萄糖生物感測器之研究”,國立雲林科技大學化學工程系碩士班,碩士論文,2006。
[71]HowlRn T. EveNsJ, r. nNoJ unrrHA . KonNenr,U.S. GeologicaSl uruey,R eston,V irginia 22092,American Mineralogist, Volume 61, pages 996-1N0, 1976
[72]Huang, Jianfei, et al. "Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection." ACS applied materials & interfaces 6.10 (2014): 7055-7062.
[73]Li, Yancai, et al. "Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor." Sensors and Actuators B: Chemical 206 (2015): 735-743.
[74]N. Q. Dung, D. Patil, H. Jung, D. Kim, “A high-performance nonenzymatic glucosesensor made of CuO–SWCNT nanocomposites,  ”Biosens.Bioelectron, pp.280–286, 2013.
[75]J. Yang, L. C. Jiang, W. D. Zhang, S. Gunasekaran, “A highly sensitive non-enzymaticglucose sensor based on a simple two-step electrodeposition of cupric oxide(CuO) nanoparticles onto multi-walled carbon nanotube arrays, ” Talanta, pp.25–33, 2010.
[76]Yang, Yu Jun, and Shengshui Hu. "Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide." Electrochimica Acta 55.10 (2010): 3471-3476.
[77]X. Zhang, L. Wang, R. Ji, L. Yu, G. Wang, Nonenzymatic glucose sensor based on Cu–Cu2S nanocomposite electrode, Electrochem. Commun. 24 (2012) 53–56.
[78]Y.J. Yang, J. Zi, W. Li, Enzyme-free sensing of hydrogen peroxide and glucoseat a CuS nanoflowers modified glassy carbon electrode, Electrochim. Acta 115(2014) 126–130.
[79]X. Zhang, G. Wang, A. Gu, Y. Wei, B. Fang, CuS nanotubes for ultrasensitive nonenzymatic glucose sensors, Chem. Commun. (2008) 5945–5947.