跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃學昌
研究生(外文):HUANG, XUE-CHANG
論文名稱:財報分析之風險視覺化效益評估
論文名稱(外文):The Evaluation of Risk Visualization in Financial Statement Analysis
指導教授:孫嘉明孫嘉明引用關係
指導教授(外文):SUN, CHIA-MING
口試委員:陳重光施雅月
口試委員(外文):CHEN, CHUNG-KUANGSHIH, YA-YUEH
口試日期:2018-06-19
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:會計系
學門:商業及管理學門
學類:會計學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:62
中文關鍵詞:財務預警視覺化分析風險視覺化
外文關鍵詞:financial early warningvisual analyticsrisk visualization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
近十年來,國內外相繼發生多起企業失敗或破產之事件,雖然會計師對企業的失敗事件不需要負起全部的責任,但投資大眾會質疑會計師,未能及時出具繼續經營疑慮意見以達到警示之效果。因此,需要具有專業知識的財務分析師,提早為投資大眾,預測企業發生財務危機的可能性;為此,利用資料探勘分析發展之財務預警模型相關研究,蔚為盛行。但因為資料探勘分析的判定規則與結果不易於理解與解釋,對會計師而言,仍卻步而較少實地應用。本研究為彌補此限制,建構風險視覺化的財務資訊儀表板,以便於財務分析師能以淺顯易懂的視覺化圖形,進行視覺化分析提供相關人員,進行相關的評估。
本研究將資料探勘所發現之繼續經營疑慮法則,以杜邦分析之相關財務資訊作為視覺化資訊呈現框架,結合學者提出的視覺化分析知識生成方法作為視覺化設計之多層分析程序,反覆設計與修正以得到易於理解使用之風險視覺化圖表雛形;後續並透過使用者訪談,收集與評估視覺化介面的決策效益回饋資訊。經由上述研究程序,以達成本研究之目的:(一)財務分析師在分析財務報表過程中如何藉由操作互動式視覺化圖表以辨識是否為發生財務危機之公司;(二)探討財務分析師如何利用視覺化工具,深入分析各指標所產生的趨勢變動之效果,並提供證據給一般的投資者或企業,以採取對應之策略。
本研究經過使用者評估發現,應用視覺化分析知識生成方法,所設計出可用於反覆探討分析之財務預警儀表板,確實有助於使用者快速辨識其評估對象是否為財務危機公司,並可深入分析各指標變動趨勢,協助財務分析師找尋可能的高風險區域,以利於即時採取適當之回應措施。

There occurred more and more business failure or bankruptcy at home and abroad in these ten years, although accountants are not fully responsible for corporate failures, hower, investors will question accountants failure to issue timely going concern opinion to achieve the effect of warning. Therefore, a professional financial analyst is needed to predict the possibility of a financial crisis for investors in advance; therefore, it is very popular to study the financial early warning model by means of data maining, because the data mining analysis to determine the rules and the results are hard to understand and explain, for accountants, there are still fewer practical applications to be made. In order to make up for this limitation, this study constructs the risk visualized financial information dashboard, so that the financial analyst can use simple and understandable visual graphics, visual analysis to provide the investment public for relevant evaluation

In this study, data mining found the law to continue to operate doubts, financial information related to the analysis of DuPont as a visual information presentation framework, combined with the knowledge generation method of visual analysis proposed by scholars, it is used as a multilayer analysis program for visual design; Follow-up and user interviews were conducted to collect and evaluate decision benefit feedback information from the visual interface. Through the above research procedures to achieve the purpose of cost research. (1) how can financial analysts identify the company in the financial crisis by operating interactive visual charts during the analysis of financial statements? (2) how can financial analysts make use of visual tools to deeply analyze the effects of trend changes generated by various indicators and provide evidence to general investors or enterprises to adopt corresponding strategies?

This study found that users assessment using visual analysis method to generate knowledge, with the production of a financial early warning dashboard, it really helps to enhance reasoning company financial crisis. Besides, it can in-depth analysis of various index change trends, which prompting financial analysts to promote the sensitivity of the information, provide evidence to take corresponding measures.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章、緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究流程 3
第二章、文獻探討 6
第一節 財務危機預警 6
第二節 視覺化分析 8
第三節 風險視覺化 13
第三章、研究設計 17
第一節 研究方法 17
第二節 視覺化分析之知識生成模型 18
第四章、分析與討論 27
第一節 探索循環 27
第二節 驗證循環 34
第三節 知識循環 41
第四節 使用者之回饋 42
第五章、結論與建議 45
第一節 研究結果 45
第二節 研究建議與限制 46
參考文獻 47

表3 - 1財務危機類別 20
表3 - 2電子產業預測法則 23
表4- 1圖表使用目標及建議 30
表4- 2 驗證循環之匯總表 42
表4- 3訪談問題總表 43
表4- 4訪談人員基本資料 43

圖1 - 1 研究流程 5
圖2 - 1以人為中心的機器學習架構 10
圖2 - 2視覺化分析之知識生成模型 11
圖2- 3探索循環過程的詳細路徑 12
圖2 - 4風險視覺化框架的關鍵性問題 14
圖2 - 5互動式風險儀表板 15
圖2 - 6部科營運分布圖 16
圖2 - 7資金風險 16
圖3 - 1設計科學研究方法流程圖 17
圖3 - 2視覺化分析之詳細知識生成模型 18
圖3 - 3視覺化分析之知識生成之部分圖示 21
圖3 - 4視覺化分析之知識生成之部分圖示 21
圖3 - 5財務報表原始資料格式 22
圖3 - 6視覺化分析軟體適合之格式 22
圖3 - 7杜邦分析架構圖 26
圖4 - 1財務預警之風險儀表板 28
圖4 - 2杜邦分析之風險儀表板 29
圖4 - 3一階指標架構圖 30
圖4 - 4 一階指標 31
圖4 - 5二階指標架構圖 32
圖4 - 6二階指標 32
圖4 - 7三階指標架構圖 33
圖4 - 8 三階指標 33
圖4 - 9財務預警之風險儀表板之部分圖示 34
圖4 - 10杜邦分析架構圖_2015年祥業公司 35
圖4 - 11 一階指標_股東權益報酬率折線圖 36
圖4 - 12一階指標_資產報酬率折線圖 37
圖4 - 13一階指標_權益乘數折線圖 37
圖4 - 14三階指標_負債趨勢圖 38
圖4 - 15二階指標_資產周轉率、稅後淨利率歷年折線圖 39
圖4 - 16二階指標_營業收入淨額歷年折線圖 39
圖4 - 17二階指標_資產總額歷年折線圖 40
圖4 - 18三階指標_非流動資產_不動產廠房及設備 41
KPMG(2016)建立反避稅網絡 全球化趨勢,https://assets.kpmg.com/content/dam/kpmg/tw/pdf/2016/07/201606-kpmgmonthly.pdf
王明昌、鄭揚耀、柯建全(2015),企業財務危機前之媒體管理,會計評論,(61),77-119。
吳蕙真(2007),台灣集團企業財務預警模式─ 加入公司治理變數探討,台北市: 東吳大學企業管理研究所碩士論文
李若綺、呂宗學(2016年10月)。風險溝通數據視覺化。呂宗學(主持人),衛生統計與健康風險數據視覺化。台北市國防醫學院。
林宜隆、孫嘉明、邱靜宜(104年),主計資訊系統導入持續性稽核技術之研究。行政院主計總處委託研究之總結報告。(編號: RES-104-01)。臺北市:行政院主計總處。
林慈慧(2017),以互動式視覺化分析評估預算編製風險-以公部門為例。國立雲科科技大學會計系研究所碩士班論文。
侯榮英,張文信,蕭智維,江宜靜(2010),運用商業智慧系統建構視覺化會計圖表應用於醫院管理-以南部某醫院為例,醫務管理期刊,11(3),75-87。
翁慈宗(2009),資料探勘的發展與挑戰,科學發展期刊,(442),34-37。
區耀軍(2016年5月5日),安侯建業專欄-應用大數據,培育新世代審計3.0人才。工商時報。取自 http://www.chinatimes.com/newspapers/2602
張漢傑(2009),解讀淨值報酬率的密碼-杜邦財務比率,會計研究月刊,(279),86-93。
張麗娟,許佳豪,張耀元(2012),建構臺灣電子業財務預警-以資料探勘技術分析,國立虎尾科技大學財金所專任副教授** 國立虎尾科技大學資管所碩士國立政治大學企管系,臺灣銀行季刊第,63(1)。
陳志豪(2002),「建築業危機預警模型之研究」,碩士論文,銘傳大學財務金融學系。
陳肇榮(1983),「運用財務比率預測企業財務危機之實證研究」,國立政治大學財,政研究所博士論文。
黃劭彥,李宗霖,林慶儒(2015),資料 + 分析 = 新洞察:會計教育與審計查核.會計研究月刊,(358),102-109。
黃劭彥,李超雄,洪光宏,吳東憲(2006),以經營效率觀點建立臺灣資訊電子業務財務危機預警模型,文大商管學報,11(2),1-20。
蔡賢民(2016),採領域驅動資料探勘方法進行財務預警分析,國立雲科科技大學會計系研究所碩士班論文。
盧鈺欣,林昱成,林育伶(2016),資料探勘技術在繼續經營疑慮意見診斷模型之應用,會計評論,(63),77-108。
錢才瑋,劉巡宇,邱仲慶(2014),利用管制圖偵測財務報表科目異常之成效探討,醫務管理期刊,15(3),258-276。
簡珮如(2004),「總體經濟、財務資訊與公司治理變數對公司財務危機機率預測之影響」,碩士論文,銘傳大學財務金融學系。
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609.
Amar, R., Eagan, J., & Stasko, J. (2005, October). Low-level components of analytic activity in information visualization. In Information Visualization, 2005. INFOVIS 2005. IEEE Symposium on (pp. 111-117). IEEE.
Ata, H. A., & Seyrek, I. H. (2009). The use of data mining techniques in detecting fraudulent financial statements: An application on manufacturing firms. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(2).
Beard, M. K., Buttenfield, B. P., & Clapham, S. B. (1991). NCGIA Research Initiative 7 Visualization of Spatial Data Quality: Scientific Report for the Specialist Meeting (91-26).
Beaver, W. H. (1966). Financial ratios as predictors of failure.Journal of accounting research, 71-111.
Bertini, E., & Lalanne, D. (2010). Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery. Acm Sigkdd Explorations Newsletter, 11(2), 9-18.
Bertini, E., & Lalanne, D. (2010). Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery. Acm Sigkdd Explorations Newsletter, 11(2), 9-18.
Bertini, E., Tatu, A., & Keim, D. (2011). Quality metrics in high-dimensional data visualization: An overview and systematization. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2203-2212.
Columba, F., Venditti, F., & Sorrentino, A. (2018). A Risk Dashboard for the Italian Economy. SSRN Electronic Journal. doi: 10.2139/ssrn.3160804
Cook, K. A., & Thomas, J. J. (2005). Illuminating the path: The research and development agenda for visual analytics.
Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of accounting research, 167-179.
Endert, A., Hossain, M. S., Ramakrishnan, N., North, C., Fiaux, P., & Andrews, C. (2014). The human is the loop: new directions for visual analytics. Journal of intelligent information systems, 43(3), 411-435
Eppler, M. J., & Aeschimann, M. (2009). A systematic framework for risk visualization in risk management and communication. Risk Management, 11(2), 67-89.
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.
Few, S. (2013). Information Dashboard Design: Displaying data for at-a-glance monitoring. Analytics Press.
Flood, M. D., Lemieux, V. L., Varga, M., & Wong, B. W. (2016). The application of visual analytics to financial stability monitoring. Journal of financial stability, 27, 180-197.
Gannholm, L. (2013). A Comparative Evaluation Between Two Design Solutions for an Information Dashboard.
Gartner Analytics(2018).Magic Quadrant for Analytics and Business Intelligence Platforms
Goodchild, M., Buttenfield, B., & Wood, J. (1994). On introduction to visualizing data validity. Visualization in geographical information systems, 141-149.
Griethe, H., & Schumann, H. (2006, March). The visualization of uncertain data: Methods and problems. In SimVis (pp. 143-156).
Holmes, G. (1984). How to present your message graphically. Accountancy, 95(1088), 64-71.
Keim, D. A., Mansmann, F., Schneidewind, J., Thomas, J., & Ziegler, H. (2008). Visual analytics: Scope and challenges. In Visual data mining (pp. 76-90). Springer, Berlin, Heidelberg.
Klir, G. J., & Wierman, M. J. (2013). Uncertainty-based information: elements of generalized information theory (Vol. 15). Physica.
Kontio, J., Jokinen, J. P., & Rosendahl, E. (2004, September). Visualizing and formalizing risk information: an experiment. In Software Metrics, 2004. Proceedings. 10th International Symposium on (pp. 196-206). IEEE.
Lau, A. H. L. (1987). A five-state financial distress prediction model. Journal of accounting research, 127-138.
Leivian, G. M. (1980). How to communicate financial data more efficiently. Management Accounting, 62(1), 31-34.
Muir, B. M. (1987). Trust between humans and machines, and the design of decision aids.International Journal of Man-Machine Studies, 27(5-6), 527-539.
North, C. (2006). Toward measuring visualization insight. IEEE computer graphics and applications, 26(3), 6-9.
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 109-131.
Ong, M. L. L., Jeasakul, M. P., & Kwoh, M. S. (2013). HEAT! A Bank Health Assessment Tool (No. 13-177). International Monetary Fund.
Pang, A. (2001, September). Visualizing uncertainty in geo-spatial data. In Proceedings of the Workshop on the Intersections between Geospatial Information and Information Technology (pp. 1-14). Arlington, VA: National Research Council.
Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of management information systems, 24(3), 45-77.
Pirolli, P., & Card, S. (2005, May). The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In Proceedings of international conference on intelligence analysis (Vol. 5, pp. 2-4).
Sacha, D., Sedlmair, M., Zhang, L., Lee, J. A., Weiskopf, D., North, S., & Keim, D. (2016, August). Human-centered machine learning through interactive visualization. ESANN.
Sacha, D., Senaratne, H., Kwon, B. C., Ellis, G., & Keim, D. A. (2016). The role of uncertainty, awareness, and trust in visual analytics. IEEE transactions on visualization and computer graphics, 22(1), 240-249.
Sacha, D., Stoffel, A., Stoffel, F., Kwon, B. C., Ellis, G., & Keim, D. A. (2014). Knowledge generation model for visual analytics. IEEE transactions on visualization and computer graphics, 20(12), 1604-1613.
Sacha, D., Stoffel, A., Stoffel, F., Kwon, B. C., Ellis, G., & Keim, D. A. (2014). Knowledge generation model for visual analytics. IEEE transactions on visualization and computer graphics, 20(12), 1604-1613.
Sarlin, P. (2016). Macroprudential oversight, risk communication, and visualization. Journal of Financial Stability, 27, 160-179.
Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on 336-343. IEEE.
Sukumar, P.T., Metoyer, R.A., & He, S. (2017). Holistic Reviews in Admissions: Reviewer Biases and Visualization Strategies to Mitigate Them.
Thomson, J., Hetzler, E., MacEachren, A., Gahegan, M., & Pavel, M. (2005, March). A typology for visualizing uncertainty. In Visualization and Data Analysis 2005(Vol. 5669, pp. 146-158). International Society for Optics and Photonics.
Tory, M., & Moller, T. (2004). Human factors in visualization research. IEEE transactions on visualization and computer graphics, 10(1), 72-84.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊