跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:譚大惠
研究生(外文):Tan Ta-Hui
論文名稱:PTFE-二丁醇碟式平板型迴路式熱管研究
論文名稱(外文):The Research and Development of PTFE Wick-2-Butanol with Disk Type Flat Loop Heat Pipe
指導教授:吳聖俊
指導教授(外文):Wu Shen -Chen
口試委員:孔健君蘇盛竹
口試委員(外文):Kung Chien-ChungSu Shen-Jwu
口試日期:2018-07-06
學位類別:碩士
校院名稱:中華科技大學
系所名稱:飛機系統工程研究所在職專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:58
中文關鍵詞:自在潤濕流體
外文關鍵詞:Self-Rewetting Fluid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在研發PTFE(Polytetrafluoroethylene鐵氟龍)-二丁醇碟式(Disk Type)平板型迴路式熱管(Flat Loop Heat Pipe),本文毛細結構將選用PTFE,而工作流體欲克服PTFE的疏水性,因此使用自再潤濕流體(Self-Rewetting Fluid,SRF)為工作流體,該流體有別於一般流體,除了降低表面張力外,在達到特定溫度後,表面張力會發生逆轉現象,也就是冷流體會自動往加熱面補足,所以本文將研究探討最佳自再潤濕流體成份配方,應用於碟式平板型迴路式熱管提升其熱傳性能效益。
由這方面的相關文獻研究得知,最佳的自再潤濕流體配方為丁醇6% 飽和水溶液,而且和飽和濃度越高的醇類自再潤濕流體配方會有更強的自再潤濕流體特性。本文經由文獻回顧探討而進一步分析後,發現丁醇的同分異構物二丁醇具較高濃度溶於水之特性,所以本文試著將二丁醇水溶液形成自再潤濕流體於碟式平板型迴路式熱管,用以提高熱傳性能。
熱測試結果發現以二丁醇20%水溶液為工質,和鎳比較對應之後發現,系統最低總熱阻從毛細結構-鎳0.61OC/W降至PTFE 0.395OC/W。它的最大熱負載達到395W,熱通量為38W/cm2,系統總熱阻降至0.395OC/W,而和6% 丁醇比較對應之後發現,二丁醇20% 熱傳量提升了45%,總熱阻也下降了近1/2,成功完成PTFE-二丁醇碟式平板型迴路式熱管研發。

關鍵字:自再潤濕流體、鐵氟龍、二丁醇、碟式蒸發器、平板型迴路式熱管


This thesis was developed to test PTFE-(Polytetrafluoroethylene)-2-butanol disk type with Flat Loop Heat Pipe for the purpose of improving the performance of disk-type flat loop heat pipe. For the fundamental structure of this thesis PTFE is used. The working fluid is intended to overcome the hydrophobicity of PTFE. Using a self-rewetting fluid as the working fluid will reduce the heat from a flat loop heat pipe. This fluid is different from the general fluid uniqueness. By reducing surface tension, after reaching a certain temperature, surface tension will reverse. That is, the cold fluid will automatically flow through the heating surface. The aim of this thesis is to discover the best self-rewetting fluid composition to be applied to a disk type flat loop heat pipe to improve its heat transfer performance.

This literature contains data related to research in the area of self-rewetting fluids. The analysis reveals the best self-rewetting fluid is 6 wt% butanol aqueous solution. A higher saturation level of alcohol should produce improved self-rewetting fluid properties. This thesis was developed and analyzed after reviewing the literature. It was determined that an isomer of 2-butanol was highly soluble in water. Adding 2-butanol aqueous solution, forms a self-rewetting fluid. This fluid can be used in the disk type flat loop heat pipe. When used the heat transfer performance is improved.

Thermal test results found that when 20% 2-butanol was used as the working fluid in place of nickel, the lowest total thermal resistance of the system reduced from 0.61oC/W to 0.395oC/W. Thermal test results found that 20 wt% 2-butanol aqueous solution as a working fluid has a maximum heat load of 395W. Heat flux reaches 38W/cm2. The total thermal resistance of the system reduced to 0.394oC/W. Compared with 6 wt% butanol, it was found that when using 20 wt% 2-butanol, heat transfer increased by 45%. Total thermal resistance also dropped by nearly 50%. A successful PTFE with 20 wt% 2-butanol disk type flat loop heat pipe was developed.


Key Words: Self-Rewetting Fluid, PTFE, 2-Butanol, Disk Type Evaporator, and Flat Loop Heat Pipe.



目次

論文口試委員會審定書………………………………………………………………i
誌謝……………………………………………………………………………….ii
摘要…………………………………………………………………………………..iii
ABSTRACT…………………………………………………………………………iv
目次………...……………………………………………………………………v
表目錄……...………………………………………………………………………vii
圖目錄……...…………………………………………………………………viii
符號說明…………………………………………………………………………..…x
第一章 緒論……………………………………………………………………..…1
第一節 前言………………………………………………………………………1
第二節 文獻回顧………………………………………………………………..10
第三節 研究目的………………………………………………………………13
第二章 碟式平板型迴路式熱管操作原理與限制………………………………...14
第一節 碟式平板型迴路式熱管的基本操作原理…………………..…………14
第二節 系統的操作限制……………………………..…………………………16
第三節 熱阻分析…………………………………………………………...…...19
第三章 碟式平板型迴路式熱管設計………….………………………………24
第一節 系統材質選擇…………………………...................................................25
第二節 傳輸管路與冷凝器………………………………………………….…25
第三節 補償室之設計…………………………………………………….…26
第四節 毛細結構之設計…………………………………………………………27
第五節 蒸發器之設計…………………………………………………………28
第四章 實驗設備與方法…………………………………………………………30
第一節 實驗步驟………..……………………………………………………30
第二節 毛細結構製作設備……………………………………………………34
第三節 系統測試設備…………………………………………………………34
第四節 誤差分析…………………………………………………………………36
第五章 結論與討論……………………………………………….…………39
第一節 毛細結構製作結果……………………………………………………39
第二節 工作流體表面張力量測………………………………………………40
第三節 碟式平板型迴路式熱管熱傳性能測試結果…………………………41
第六章 結論與建議…………………………………………………………46
第一節 結論……………………………………………………………46
第二節 建議……………………………………………………………47
參考文獻……………………………………………………………………………48
附錄…………………………………………………………………………………52
作者簡介……………………………………………………………………………59

參考文獻

[1]U. S Air Force Avionics Integrity Program Notes. 1989.
[2]Li, C., Peterson, P.,&Wang, Y. “Evaporation/boiling Phenomena on Thin Capillary wick,” Journal of Heat Transfer, Vol.128, Issue 12, pp.1312-1319, 2006.
[3]Gaugler, R. S. “Structure of a heat pipe,” U.S. Patent No.2350348, 21 December, 1942.
[4]Grover, G.M. “Evaporation-Condensation heat transfer device,” U.S. Patent No.3229759, 18 January, 1966.
[5]Maidanik, Y. F. “Heat Transfer Apparatus,” U.S. Patent No.4515209, 7 May, 1985.
[6]Baker, C., Bienert, W.,& Ducao, A. “Loop heat pipe flight experiment,” SAE Paper, No.981580, 1998.
[7]Baumann, J.,& Rawal S. “Viability of loop heat pipes for space solar power applications,” 35TH AIAA Thermophysics Conference, 2001.
[8]Gregori, C., Mishkinis, D., Prado, P.,& Torres, A., “Loop heat pipe technology for aircraft anti-icing applications,” SAE Paper, No.2007-01-3312, 2007
[9]Li, H., Liu, Z. C., Chen, B. B., Liu, W., Li, C.,& J. Yang, “Development of biporous wicks for flat-plate loop heat pipe,” Experimental Thermal and Fluid Science, Vol 37, pp. 91-97, 2012
[10]Li, J. “A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips,” Applied Thermal Engineering, Vol. 56, pp. 18-26, 2013.
[11]http://www.calyos-tm.com/
[12]Maidanik, Y.F., & Pastukhov, V., “Loop Heat Pipes – Recent Developments, Test Results and Applications,” SAE Paper, No.1999-01-2530, 1999.
[13]R. Vochten., & G. Petre, “Study of the Heat of Reversible Adsorption at the Air-Solution Interface. II. Experimental Determination of the Heat of Reversible Adsorption of Some Alcohols,” Journal of Colloid and Interface Science, Vol.42, pp. 320-327, 1973.
[14]Zhang, N. “Innovative heat pipe systems using a new working fluid,” International Communications in Heat and Mass Transfer, Vol. 28, pp.1025-1033, 2001.
[15]Abe, Y., Iwaski, A. & K. Tanaka, “Microgravity experiments onphase change of self-rewetting fluids,” Annals of the New York Academy of Sciences, Vol. 1027, pp. 269-285, 2004.
[16]Abe, Y., Iwaski, A.,& K. Tanaka, “Thermal Management with Self-Rewetting Fluids, ” Microgravity-Science and Technology, Vol. 16, pp. 148-152, 2005.
[17]Abe, Y. “Self-Rewetting Fluids,”Annals of the New York Academy of Sciences, Vol. 1077, pp.650-667, 2006.
[18]Francescantonio, N. d., Savino, R..,& Abe,Y. “New Alcohol Solutions for Heat Pipes: Marangoni Effect and Heat Transfer Enhancement,” International Journal Heat and Mass Transfer, Vol. 51, pp. 6199–6207, 2008.
[19]Savino, R., Raola, R., Cecere, D. A.,& Fortezza,R. “Self-Rewetting Heat Transfer Fluids and Nanobrines for Space Heat Pipes,” Acta Astronautica, Vol. 67, pp. 1030-1037, 2010.
[20]Morovati, M., Bindra, H., Esaki, S.,& Kawaji.,M. “Enhancement of Pool Boiling and Critical Heat Flux in Self-Rewetting Fluids at Above Atmospheric Pressures,” in Proc. Of 8th ASME-JSME Thermal Engineering Joint Conference, vol. 1, pp. 1849-1854,2011.
[21]Hu, Y., Liu, T., Li, X.,& Wang, S., “Heat Transfer Enchancement of Micro Oscillating Heat Pipes with Self-Rewetting Fluid,” International Journal of Heat and Mass Transfer, Vol. 70, pp.496-503, 2014.
[22]Hu, Y., Zhang, S., Li, X.,& Wang, S., “Heat Transfer Enhancement of Subcooled Pool Boiling with Self-Rewetting Fluid,” International Journal of Heat and Mass Transfer, Vol. 83, pp. 64-68, 2015.
[23]Wu, S.C. “Study of Self-Rewetting Fluid Applied to Loop Heat Pipe,” International Journal Thermal and Science, Vol. 98, pp. 374-380,2015.
[24]Nakamura, K., Odagiri, K.,& Nagano, H. “Study on a loop heat pipe for a long-distance heat transport under anti-gravity condition,” Applied Thermal Engineering, Vol. 107, pp. 167-174, 2016.
[25]Wu, S.C., Yen, S.H., Lo, W.C., Chung, C.Y.,& Su, S.J. “Study of Nickel Wick Structure Applied to Loop Heat Pipe with Flat Evaporator,” Key Engineering Materials, Vol. 723, pp. 282-287, 2017.
[26]Wu, S.C., Lee, T.J., Lin, W.J.,& Chung, C.Y. “Study of self-rewetting fluid applied to loop heat pipe with PTFE wick,” Applied Thermal Engineering, Vol. 119, pp. 622-628, 2017
[27]Sitar, A., Zupančič, M., Crivellari, M.,& Golobič, I., “The onset of nucleate boiling of self-rewetting fluids in microchannels,” IOP Conference Series: Earth and Environmental Science, Vol. 93, conference 1, 2017.
[28]Monti, R. “Physics of Fluids in Microgravity,” Taylor and Francis, 2001.
[29]Amrit Ambirajan, Abhijit , A., Jasvanth, S., Vaidya Anand, Rajendran, A.,& Dinesh Kumer, “Loop Heat Pipes: A review of Fundamentals, Operation, and Design,” Heat Transfer Engineering, page 387-405, 2011.
[30]Wu, S.C., Gu, T.W.,& Chen, Y.M. “Study of PTFE wick structure applied to loop heat pipe,” Applied Thermal Engineering, Vol. 81, pp.51, 2015.
[31]Moffat, R.J.“Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science, Vol. 1, pp. 3-17, 1988.
[32]Maidanik, Y. F. “Review-Loop Heat pipe,” Applied Thermal Engineering, 25. pp. 635-657, 2005.
[33]Wu, We. Ting., T.W. “Heat transfer enhancement of loop heat pipe with flat plate evaporator 2-butanol aqueous solution,” China University of Science and Technology, 04 July,2018.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top