跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧立峯
研究生(外文):Teng, Li-Feng
論文名稱:低熱預算後續處理製程於透明氧化物薄膜電晶體技術之應用
論文名稱(外文):Study on transparent oxide thin film transistors with low thermal budget post-treatments
指導教授:劉柏村劉柏村引用關係
指導教授(外文):Liu, Po-Tsun
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:126
中文關鍵詞:氧化物半導體低熱預算薄膜電晶體
外文關鍵詞:oxide semiconductorlow thermal budgetthin-film transistors
相關次數:
  • 被引用被引用:3
  • 點閱點閱:444
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
近年來,透明非晶態氧化物半導體因具有高載子移動率、高透明度、室溫沉積以及可與現有顯示器製程配合等特性,普遍被認為是下個世代的顯示器主流技術之一。在眾多的氧化物半導體中,又以氧化銦鎵鋅材料最被廣為研究,然而在先前所發表的技術文獻中,氧化銦鎵鋅至少須經過300℃且30分鐘以上的退火過程,才可展現出較好的電性表現與可靠度,但是此種長時間高溫的退火製程,將會造成額外的熱能消耗以及限制此種材料的應用範圍,是故本研究提出一種可應用於氧化銦鎵鋅薄膜電晶體製程中的低熱預算退火技術-微波退火,由於微波退火技術具有:(1) 低熱預算;(2) 快速加熱;(3) 對加熱材料具有針對性,僅有會吸收微波的材料才會被加熱,因此可減少薄膜電晶體中其他材料受到高溫所造成的影響;(4) 相較於傳統退火方式,熱能是從外層傳遞至內層,會有較多的熱能損失在此過程中,微波退火技術則是直接將熱能傳遞至欲加熱之材料,除了可以減少能論損失外,也具有較佳的均勻性。…等特性,十分適合應用於氧化銦鎵鋅薄膜電晶體製程技術中。在本研究中,我們成功利用微波退火技術製作出在基本電性與可靠度方面可與傳統高溫爐管退火450℃1小時製成之氧化銦鎵鋅薄膜電晶體匹配之元件,其載子移動率高達13.5 cm2/Vs、臨界電壓為3.28 V、以及次臨界擺幅為0.43 V/decade。
雖然氧化銦鎵鋅薄膜電晶體具有良好的電性表現,然而從材料觀點出發,氧化銦鎵鋅中含有稀散元素-銦與鎵,除了會增加製程成本外,在未來的發展上也勢必會受到限制,因此開發不含貴重及稀有元素的氧化物半導體便成為工業界與學術界共同努力的目標,是故本研究也發展不含貴重及稀有金屬的氧化物半導體-氧化鋁鋅錫薄膜電晶體技術,並針對其特性進行詳細的探討。在本研究中,首先探討不同錫含量對於氧化鋁鋅錫薄膜電晶體特性的影響,而後進一步利用低熱預算的電漿處理改善薄膜電晶體的可靠度。由實驗結果顯示,利用氧電漿及一氧化二氮電漿可有效使得薄膜背通道中的錫離子氧化,並增強背通道對外在環境的抵抗性,進而改善氧化鋁鋅錫薄膜電晶體的可靠度與穩定度。此外,我們也成功的利用氫電漿處理的方式,將製程溫度由原本的450°C降低至350°C,並且保持住氧化鋁鋅錫薄膜電晶體良好的電性表現。最後,本論文利用一低熱預算薄膜缺陷鈍化技術-超臨界流體技術,改善氧化鋁鋅錫薄膜電晶體之特性,由於超臨界流體同時具有氣體高擴散性與液體高負載能力,可有效將氧化劑帶入濺鍍沉積的薄膜內,並成功地在150°C低溫的環境下鈍化薄膜內的缺陷,提升氧化鋁鋅錫薄膜電晶體的基本電特性與可靠度。

Recently, transparent metal oxide semiconductor attracts great attention due to the characteristics of high mobility, high transparency, room temperature deposited, and high process compatibility with present solid-state semiconductor technologies. Among several novel oxide semiconductors, amorphous InGaZnO (a-IGZO) thin film received considerable attention for their use in next-generation active matrix liquid crystal display (AMLCD) and active-matrix organic light-emitting diode display (AMOLED) technologies. The sputter-deposited a-IGZO active layer typically requires thermal annealing at around 300℃ for 30 min or longer to achieve a satisfactory device performance and stability. In this study, we presents a novel microwave annealing process for a-IGZO TFT fabrication with low thermal budget process. Microwave heating process can transfer the energy directly to the target materials by absorption of microwave energy throughout the volume of the material. Among its advantages include low thermal budget, rapid heating process, thermal uniformity, suppression of unexpected species diffusion, and selective heating of materials, which is impossible with the typical furnace annealing process, microwave annealing is highly promising for a-IGZO TFT manufacturing. The performance of a-IGZO TFTs with microwave annealing are well competitive with its counterpart with furnace annealing at 450℃ for 1 hour with a carrier mobility of 13.5 cm2/Vs, threshold voltage of 3.28 V, and subthreshold swing of 0.43 V/decade.
Although a-IGZO TFTs performed good electrical performance, containing the rare-dispersive elements will increase the cost and be a critical issue for the long-term applications. Therefore, rare elements-free transparent metal oxide semiconductors are considered to be the promising candidates for the next generation display technologies. In this work, we developed a novel rare elements-free oxide semiconductor, amorphous AlZnSnO (a-AZTO), TFT technologies. The band-gap of a-AZTO is larger than 3.6 eV, therefore it shows high transparency in visible light region. We have investigated the effects of SnO2 content on performance of a-AZTO TFTs. Moreover, we employed the plasma treatment to enhance the electrical reliability of a-AZTO TFTs. The experiment results showed that the O2 and N2O plasma could effectively oxidize Sn in back channel of a-AZTO thin film and improve the reliability and stability of a-AZTO TFTs. Furthermore, we decreased the fabrication temperature from 450°C to 350°C by H2 plasma process and remained great performance of a-AZTO TFTs. In the end of this study, a supercritical fluid (SCF) technology is proposed at 150°C to enhance the electrical performance and reliability of a-AZTO TFTs. The SCF provides good liquid-like solvency and high gas-like diffusivity, giving it excellent transport capacity to take the H2O molecules into metal oxide films and terminate the traps in metal oxide films by the oxidization reaction.

摘要 i
Abstract iii
誌謝 v
Contents vii
Figure Captions x
Tables xviii
Chapter 1 Introduction 1
1.1 Introduction of display technology 1
1.2 Transparent amorphous oxide semiconductor (TAOS) 3
1.3 Motivation 6
1.4 Organization of the thesis 8
Chapter 2 Experiments 18
2.1 Microwave annealing system 18
2.2 X-ray photoelectron spectroscopy 19
2.3 Low-Temperature high-pressure post treatment system 21
2.4 Parameter extraction 22
Chapter 3 Effects of microwave annealing process on a-IGZO TFTs 28
3.1 Review and motivation 28
3.2 Experiment process 31
3.3 Results and discussions 33
3.3.1 Effects of microwave annealing power and duration 33
3.3.2 Comparison with a-IGZO TFTs with traditional furnace annealing 37
3.4 Summaries 40
Chapter 4 Investigation on novel rare elements-free TAOS 53
4.1 Review and motivation 53
4.2 Experiment process 55
4.2.1 Fabrication of a-AZTO TFTs 55
4.2.2 Plasma post treatment 56
4.2.3 Supercritical fluid treatment (SCF) 57
4.3 Results and discussions 58
4.3.1 Effects of composition on a-AZTO TFTs 58
4.3.2 Plasma treated a-AZTO TFTs 63
4.3.3 Electrical performance enhancement of a-AZTO by SCF Treatment 69
4.4 Summaries 75
Chapter 5 Conclusions and future work 102
5.1 Conclusions 102
5.2 Future work 104
References 105
Vita 119
Publication List 120

[1] www.apple.com
[2] S. Wagner, H. Gleskova, I.-C. Cheng, M. Wu, “Silicon for thin-film transistors”, Thin Solid Film, vol. 430, p. 15, 2003.
[3] 陳金鑫,黃孝文,有機電激發光材料與元件,五南圖書出版公司,台北,民國九十四年。
[4] Y. Kuo, Thin Film Transistors-Material and Processes, vol. 1, p. 17, Texas A&;M University, U.S.A., 2004.
[5] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistor using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, p. 488, 2004.
[6] N. F. Mott, “Silicon dioxide and the chalcogenide semiconductors; similarities and differences,” Adv. Phys., vol. 26, p. 363, 1977.
[7] S. Narushima, M. Orita, M. Hirano, and H. Hosono, “Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2CdO-GeO2,” Phys. Rev. B, vol. 66, p. 035203, 2002.
[8] Nikkei Electronics 2007.08/材料世界網整理
[9] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, “Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations,” Phys. Rev. B, vol. 75, p. 035212, 2007.
[10] H. Hosono,”Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst.Solids, vol. 352, p. 851, 2006.
[11] J. S. Park, K. S. Kim, Y. G. Park, Y. G. Mo, H. D. Kim and J. K. Jeong, “Novel ZrInZnO thin-film transistor with excellent stability,” Adv. Mater., vol. 21, p. 329, 2008.
[12] C. J. Chiu, S. P. Chang, and S. J. Chang, “High-performance a-IGZO thin-film transistor using Ta2O5 gate dielectric,” IEEE Electron Device Lett., vol. 31, p. 1245, 2010.
[13] P. T. Liu, Y. T. Chou, L. F. Teng, and C. S. Fuh, “High-gain complementary inverter with InGaZnO/pentacene hybrid ambipolar thin film transistors,” Appl. Phys. Lett., vol. 97, p. 083505, 2010.
[14] P. T. Liu, Y. T. Chou, L. F. Teng, F. H. Li, and H. P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 98, p. 052102, 2011.
[15] K. Nomura, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing,” Appl. Phys. Lett., vol. 93, p. 192107, 2008.
[16] K. Nomura, T. Kamiya, Y. Kikuchi, M. Hirano, and H. Hosono, “Comprehensive studies on the stabilities of a-In-Ga-Zn-O based thin film transistor by constant current stress,” Thin Solid Films, vol. 518, p. 3012, 2010.
[17] C. S. Fuh, S. M. Sze, P. T. Liu, L. F. Teng, and Y. T. Chou, “Role of environmental and annealing conditions on the passivation-free In-Ga-Zn-O TFT,” Thin Solid Films, vol. 520, p. 1489, 2011.
[18] D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, and J. Chung, “Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules,” Appl. Phys. Lett., vol. 90, p. 192101, 2007.
[19] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water”, Appl. Phys. Lett., vol. 92, p. 072104, 2008.
[20] J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, “Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors,” Appl. Phys. Lett., vol. 93, p. 123508, 2008.
[21] D. K. Seo, B. H. Kong, and H. K. Cho, “Composition controlled superlattice InGaO3(ZnO)m thin films by thickness of ZnO buffer layers and thermal treatment,” Cryst. growth des., vol. 10, p. 4638 , 2010.
[22] H. Hiramatsu, K. Ueda, H. Ohta, T. Kamiy, M. Hirano and H. Hosono, “Excitonic blue luminescence from p-LaCuOSe/n-InGaZn5O8 light-emitting diode at room temperature”, Appl. Phys. Lett., vol. 87, p. 211107, 2005.
[23] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors”, J. J. Appl. Phys., vol. 48, p. 010203, 2009.
[24] K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi, and K. Domen, “Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity”, J. Phys. Chem. B., vol. 109, p. 20504, 2005.
[25] P. T. Liu, Y. T. Chou and L. F. Teng, “Charge pumping method for photosensor application by using amorphous indium-zinc oxide thin film transistors”, Appl. Phys. Lett., vol. 94, p. 242101, 2009.
[26] Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Appl. Phys. Lett., vol. 97, p. 233502, 2010.
[27] P. K. Nayak, J. V. Pinto, G. Goncalves, R. Martins, and E. Fortunato, ”Environmental, optical, and electrical stability study of solution-processed zinc-tin-oxide thin-film transistors,” J. Disp. Technol., vol. 7, p. 640, 2011.
[28] T. F. Schulze, H. N. Beushausen, T. Hansmann, L. Korte, and B. Rech, ”Accelerated interface defect removal in amorphous/crystalline silicon heterostructures using pulsed annealing and microwave heating,” Appl. Phys. Lett., vol. 95, p. 182108, 2009.
[29] H. L. Hortensius, A. Öztürk, P. Zeng, E. F. C. Driessen, and T. M. Klapwijk, “Microwave-induced nonequilibrium temperature in a suspended carbon nanotube,” Appl. Phys. Lett., vol. 100, p. 223112, 2012.
[30] Y.J. Lee, F. K. Hsueh, S. C. Huang, J. M. Kowalski, J. E. Kowalski, A. T. Y. Cheng, A. Koo, G. L. Luo, and C. Y. Wu, “A low-temperature microwave annealing process for boron-doped ultrathin Ge epilater on Si substrate,” IEEE Electron Device Lett., vol. 30, p. 123, 2009.
[31] D. H. Cho, S. Yang, C. Byun, J. Shin, M. K. Ryu, S. H. K. Park, C. S. Hwang, S. M. Chung, W. S. Cheong, S. M. Yoon, and H.Y. Chu, ”Transparent Al-Zn-Sn-O thin film transistors prepared at low temperature,” Appl. Phys. Lett., vol. 93, p. 142111, 2008.
[32] R. F. Zhuo, L. Qiao, H. T. Feng, J. T. Chen, D. Yan, Z. G. Wu, and P. X. Yan, “Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees”, J. Appl. Phys., vol. 104, p. 094101, 2008.
[33] L. F. Teng, P. T. Liu, Y. J. Lo, and Y. J. Lee, “Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor,” Appl. Phys. Lett., vol. 101, p. 132901, 2012.
[34] 羅婉柔,「微波退火技術應用於新穎式透明非晶態銦鎵鋅氧薄膜電晶體之研究」,國立交通大學,碩士論文,民國101年。
[35] http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[36] 黃震鑠,「閘極介電層於矽通道與鍺通道金氧半場效電晶體之研究」,國立交通大學,博士論文,民國100年。
[37] S. F. Mao, Z. M. Zhang, K. Tokesi, A. Csik, J. Toth, R. J. Bereczky, and Z. J. Ding, “XPS analysis of nano‐thin films on substrate,” Surface and Interface Analysis, vol. 40, p. 728, 2008.
[38] 王薇雅,「超臨界流體技術應用於新穎式透明非晶態氧化鋁鋅錫薄膜電晶體之研究」,國立交通大學,碩士論文,民國100年。
[39] 蔡志宗,「超臨界流體於低溫元件製程技術之應用與研究」,國立清華大學,博士論文,民國97年。
[40] R. van Eldik and F.-G. Klärner, High Pressure Chemistry: Synthetic, Mechanistic, and Supercritical Applications. Weinheim: Wiley-VCH, 2002.
[41] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Appl. Phys. Lett., vol. 90, p. 212114, 2007.
[42] W. Lim, S. H. Kim Y. L. Wang, J. W. Lee, D. P. Norton, S. J. Pearton, F. Ren, and I. I. Kravchenko, “High-performance indium gallium zinc oxide transparent thin-film transistors fabricated by radio-frequency sputtering,” J. Electrochem. Soc., vol. 155, p. H383, 2008.
[43] J. Y. Bak, S. M. Yoon, S. Yang, G. H. Kim, S. H. K. Park, and C. S. Hwang, “Effect of In-Ga-Zn-O active layer channel composition on process temperature for flexible oxide thin-film transistors,” J. Vac. Sci. Technol. B, vol. 30, p. 041208, 2012.
[44] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, p. 1269, 2003.
[45] C. H. Woo, Y. Y. Kim, B. H. Kong, and H. K. Cho, “Effects of the thickness of the channel layer on the device performance of InGaZnO thin-film-transistors,” Surf. Coat. Technol., vol. 205, p. S168, 2010.
[46] J. R. Groza, S. H. Risbud and K. Yamazaki, “Plasma activated sintering of additive-free AlN powders to near-theoretical density in 5 minutes,” J. Mater. Res., vol. 7, p. 2643, 1992.
[47] X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J. P. Lei, and C. G. Lee, “Microwave absorption properties of the carbon-coated nickel nanocapsules,” Appl. Phys. Lett., vol. 89, p. 053115, 2006.
[48] Y. J. Lee, F. K. Hsueh, S. C. Huang, J. M. Kowalski, J. E. Kowalski, A. T. Y. Cheng, A. Koo, G. L. Luo, and C. Y. Wu, “Sulfur-induced PtSi:C/Si:C schottky barrier height lowering for realizing n-channel finFETs with reduced external resistance,” IEEE Electron Device Lett., vol. 30, p. 472, 2009.
[49] Y. J. Chen, M. S. Cao, T. H. Wang, and Q. Wan, “Microwave absorption properties of the ZnO nanowire-polyester composites,” Appl. Phys. Lett., vol. 84, p. 3367, 2004.
[50] A. Suresh and J. F. Muth, “Bias stress stabi.ity of indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys. Lett., vol. 92, p. 033502, 2008.
[51] J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors,” Appl. Phys. Lett., vol. 93, p. 093504, 2008.
[52] T. C. Fung, K. Abe, H. Kumomi, and J. Kanicki, “Electrical instability of rf sputter amorphous In-Ga-Zn-O thin-film transistors,” J. Disp. Technol., vol. 5, p. 452, 2009.
[53] J. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin, and Y. G. Mo, “The influence of the gate dielectrics on threshold voltage instability in amorphous indium-gallium-zinc oxide thin film transistors,” Appl. Phys. Lett., vol. 95, p. 123502, 2009.
[54] H. W. Zan, W. T. Chen, C. W. Chou, C. C. Tsai, C. N. Huang, and H. W. Hsueh, “Low temperature annealing with solid-state laser or UV lamp irradiation on amorphous IGZO thin-film transistors,” Electrochem. Solid-State Lett., vol. 13, p. H144, 2010.
[55] D. L. Wood and J. Tauc, “Weak absorption tails in amorphous semiconductors”, Phys. Rev. B., vol. 5, p. 3144, 1972.
[56] P. T. Liu, Y. T. Chou, L. F. Teng, F. H. Li, C. S. Fuh and H. P. D. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO:N bilayer stack channel layers,” IEEE Electron Device Lett., vol. 32, p. 1397, 2011.
[57] T. Jun, K. Song, Y. Jeong, K. Woo, D. Kim, C. Bae, and J. Moon, ” High-performance low-temperature solution-processable ZnO thin film transistors by microwave-assisted annealing,” J. Mater. Chem., vol. 21, p.1102, 2011.
[58] J. G. J. Chern, P. Chang, R. F. Motta, and N. Godinho, “A new method to determine MOSFET Channel Length,” IEEE Electron Device Lett., vol. 1, p.170, 1980.
[59] A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In-Ga-Zn-O coplanar homojunction thin-film transistor,” Appl. Phys. Lett., vol. 94, p. 133502, 2009.
[60] S.W. Tsao, T.C. Chang, S.Y. Huang, M.C. Chen, S.C. Chen, C.T. Tsai, Y.J. Kuo, Y.C. Chen, and W.C. Wu, “Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors,” Solid-State Electron., vol. 54, p. 1497, 2010.
[61] D. Geng, D. H. Kang, M. J. Seok, M. Mativenga, J. Jang, “High-speed and low-voltage-driven shift register with self-aligned coplanar a-IGZO TFTs,” IEEE Electron Device Lett., vol. 33, p. 1012, 2012.
[62] J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, “Review of recent developments in amorphous oxide semiconductor thin-film transistor devices,” Thin Solid Films, vol. 520, p. 1679, 2012.
[63] P. T. Liu, Y. T. Chou, L. F. Teng, “Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress,” Appl. Phys. Lett., vol. 95, p. 233504, 2009.
[64] J. S. Park, T. S. Kim, K. S. Son, K. H. Lee, J. S. Jung, W. J. Maeng, H. S. Kim, E. S. Kim, K. B. Park, J. B. Seon, J. Y. Kwon, M. K. Ryu, and S. Lee, “High-performance and stable transparent Hf-In-Zn-O thin-film transistors with a double-etch-stopper layer,” IEEE Electron Device Lett., vol. 31, p. 1248, 2010.
[65] B. J. Kim, H. J. Kim, T. S. Yoon, Y. S. Kim, and H. H. Lee, “Effects on annealing temperature for solution-processed IZTO TFTs by nitrogen incorporation,” Electrochem. Solid-State Lett., vol. 13, p. H419, 2010.
[66] J. S. Lee, S. Chang, S. M. Koo, and S. Y. Lee, “High-performance a- IGZO TFT with Zr2O5 gate dielectric fabricated at room temperature,” IEEE Electron Device Lett., vol. 31, p. 225, 2010.
[67] Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Appl. Phys. Lett., vol. 97, p. 233502, 2010.
[68] C. Avis and J. Jang, ”High-performance solution process oxide TFT with aluminum oxide gate dielectric fabricated by a sol-gel method,” J. Mater. Chem., vol. 21, p. 10649, 2011.
[69] S. H. Ko Park, D. H. Cho, C. S. Hwang, M. K. Ryu, C. W. Byun, S. M. Yoon, W. S. Cheong, K. I. Cho and J. H. Jeon, ”Channel protection layer effect on the performance of oxide TFTs,” ETRI Journal, vol. 31, p. 653, 2009.
[70] S. M. Yoon, S. Y.ang, C. Byun, S. H. K. Park, D. H. Cho, S. W. Jung, O. S. Kwon, and C. S. Hwang, “Fully transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200℃,” Adv. Funct. Mater., vol. 20, p. 921, 2010.
[71] D. H. Cho, S. H. K. Park , S. Yang, C. Byun, J. Shin, M. K. Ryu, J. I. Lee, C. S. Hwang, S. M. Chung, H. Y. Chu, and K. I. Cho, “Al-Zn-Sn-O thin film transistors with top and bottom gate structure for AMOLED,” IEICE Trans. Electron., vol E92-C, p. 1340, 2009.
[72] D. H. Cho, S. H. K. Park , S. Yang, C. Byun, K. I. Cho, M. Ryu, S. M. Chung, W. S. Cheong, S. M. Yoon, and C. S. Hwang, “A protective layer on the active layer of Al-Zn-Sn-O thin-film transistors for transparent AMOLEDs,” Journal of Information Display, vol. 10, p.137, 2009.
[73] M. C. Chen, T. C. Chang, S. Y. Huang, K. C. Chang, H. W. Li, S. C. Chen, J. Lu, and Y. Shi, “A low-temperature method for improving the performance of sputter-deposited ZnO thin-film transistors with supercritical fluid,” Appl. Phys. Lett., vol. 94, p. 162111, 2009.
[74] P. T. Liu, C. T. Tsai, T. C. Chang, K. T. Kin, P. L. Chang, C. M. Chen, and Y. C. Chen, “Effects of supercritical fluids activation on carbon nanotube field emitters,” IEEE Trans. Nanotechnol., vol. 6, p. 29, 2007.
[75] J. Jeong, Y. Hong, J. K. Jeong, J. S. Park, and Y. G. Mo, “MOSFET-like behavior of a-InGaZnO thin-film transistors with plasma-exposed source–drain bulk region,” J. Disp. Technol., vol. 5, p. 495, 2009.
[76] S. H. Yang, J. Y. Kim, M. J. Park, K. H. Choi, J. S. Kwak, H. K. Kim, and J. M. Lee, “Low resistance ohmic contacts to amorphous IGZO thin films by hydrogen plasma treatment,” Surf. Coat. Technol., vol. 206, p. 5067, 2012.
[77] H. S. Shin, B. D. Ahn, K. H. Kim, J S. Park, and H. J. Kim, “The effect of thermal annealing sequence on amorphous InGaZnO thin film transistor with a plasma-treated source–drain structure,” Thin Solid Films, vol. 517, p. 6349, 2009.
[78] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett., vol. 90, p. 262106, 2007.
[79] C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, ” Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 96, p. 242105, 2010.
[80] C. T. Tsai, T. C. Chang, P. T. Liu, P. Y. Yang, Y. C. Kuo, K. T. Kin, P. L. Chang, and F. S. Huang, “Low-temperature method for enhancing sputter-deposited HfO2 films with complete oxidization,” Appl. Phys. Lett., vol. 91, p. 012109, 2007.
[81] P. T. Liu, C. T. Tsai, and P. Y. Yang, “Effects of supercritical CO2 fluid on sputter-deposited hafnium oxide,” Appl. Phys. Lett., vol. 90, p. 223101, 2007.
[82] C. T. Tsai, T. C. Chang, K. T. Kin, P. T. Liu, P. Y. Yang, C. F. Weng, and F. S. Huang, ”A low temperature fabrication of HfO2 film with supercritical CO2 fluid treatment,” J. Appl. Phys., vol. 103, p. 074108, 2008.
[83] T. Kamiya, K. Nomura, and H. Hosono, ”Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping,” J. Disp. Technol., vol. 5 p. 273, 2009.
[84] T. Kamiya, K. Nomura, and H. Hosono, “Electronic structure of the amorphous oxide semiconductor a-InGaZnO4–x: Tauc–Lorentz optical model and origins of subgap states,” Phys. Status Solidi A, vol. 206, p.860, 2009.
[85] Y. K. Moon, S. Lee, W. S. Kim, B. W. Kang, C. O. Jeong, D. H. Lee, and J. W. Park, “Improvement in the bias stability of amorphous indium gallium zinc oxide thin-film transistors using an O2 plasma-treated insulator,” Appl. Phys. Lett., vol. 95, p. 013507, 2009.
[86] G. W. Chang, T. C. Chang, J. C. Jhu, T. M. Tsai, Y. E. Syu, K. C. Chang, Y. H. Tai, F. Y. Jian, and Y. C. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett., vol. 100, p.182103, 2012.
[87] M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, and J. Szuber, “XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation,” Thin Solid Films, vol. 490, p. 36, 2005.
[88] K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, K. Yang, K. Kobayashi, M. Hirano, H. Hosono, “Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 92, p. 202117, 2008.
[89] H. Oh, S. M. Yoon, M. K. Ryu, C. S. Hwang, S. Y. Yang, and S. H. K. Park, “Photo-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor,” Appl. Phys. Lett., vol. 97, p. 183502, 2010.
[90] M. S. Huh, B. S. Yang, S. Oh, J. H. Kim, B. D. Ahn, J. H. Lee, J. Kim, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the performance of tin oxide thin-film transistors by using ultralow pressure sputtering,” J. Electrochem. Soc., vol. 157, p. H425, 2010.
[91] E. M. C. Fortunato, L. M. N. Pereira, P. M. C. Barquinha, A. M. Botelho do Rego, G. Goncalo, A. Vila, J. R. Morante, and R. F. P. Martins, “High mobility indium free amorphous oxide thin film transistors,” Appl. Phys. Lett., vol. 92, p. 222103, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊