跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/18 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏銓
研究生(外文):Po Chuan Chen
論文名稱:利用前額訊號偵測駕駛者在虛擬駕車環境中的清醒程度
論文名稱(外文):Using Forehead-Channel Activities to Detect Driver's Drowsiness in a VR Based Driving Environment
指導教授:林進燈林進燈引用關係
指導教授(外文):Chin Teng Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:多媒體工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:47
中文關鍵詞:瞌睡偵測腦電波前額電極虛擬實境線性回歸獨立成分分析
外文關鍵詞:DrowsinessElectroencephalogramForehead ChannelVirtual RealityLinear Regression ModelIndependent Component Analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:2
根據過去研究顯示,跟人類打瞌睡有很強的關聯性的腦區主要是跟枕葉區的腦波變化(8~12Hz) 有很高的相關。然而,若要在真實生活中要使用傳統的電極帽來擷取腦電波訊號是相當不方便的,而且需要繁複的準備流程,對駕駛者也相當困擾。因此本論文的主要目的就是要使用前額的電極來偵測駕駛者的精神狀態並且預測開車軌跡,這樣一來我們就能在真實的生活當中建立一個較為可行的偵測系統。

本論文主要分析並且比較了分別來自於枕葉區還有額葉區的腦波訊號。而來自於這些區域的頻率能量變化將會被用來當作輸入參數並且使用線性回歸模型來預測駕駛者的開車軌跡。而根據我們的結果,使用來自枕葉區的訊號可以得到最高的預測率。

此外,我們也證明了有一個跟打瞌睡相關的腦區位於額葉區,結果顯示4∼7Hz 頻帶的變化跟打瞌睡有很高的相關性。而使用前額電極的訊號來預測開車軌跡,雖然比使用枕葉區的準確率來的差一些但仍有八成的準確率,但這意味著使用前額電極的訊號就可以預測駕駛者的精神狀態,如此一來就可以省下使用電極帽而帶來的複雜準備程序,這樣的偵測系統在未來就可以被廣泛且容易的被使用在真實的駕車環境當中。
Previous studies showed that the alpha power increases in the occipital lobe highly related to human drowsiness. However, the acquisition of occipital EEG signals with the traditional electrode cap is inconvenient. Thus, the main purpose of this study was to confirm whether the forehead EEG signals could reflect the driver’s drowsiness and be able to use to estimate driver’s driving trajectory for constructing a feasible detecting system that can be applied in real life.
Brain signals acquired from the occipital and the frontal lobe were analyzed and compared in this study. The frequency power changes in these components were used as features and fed into linear regression model to predict driver’s driving performance. Results showed the highest estimation accuracy was yielded with the features extracted from the occipital ICs cluster.

We also found that there is another drowsiness-related brain source located in the frontal lobe. Furthermore, the increases of the theta power in the frontal lobe also highly correlated to the driver’s drowsiness. Comparing the conventional methods using the occipital activities, the estimation accuracy using the forehead signals is slightly lower but the estimation accuracy was still higher than 0.8.

Results demonstrated that forehead signals could be used to estimate the drivers’ drowsiness. The new detecting system, using forehead signals, not only can correctly estimate the user’s drowsiness but also can drastically reduce the preparation time. In the future, such detection system will be easily and widely applied in the real operational environments.
Abstract in English 1
Abstract in Chinese 2
1. Introduction 6
1.1 Importance of the drowsiness detecting 6
1.2 Drowsiness measurements 6
1.2.1 Signal-based drowsiness system 7
1.2.2 A Better EEG Measure Technology 7
1.3 The frontal signals 8
1.4 The aims of this study 9
2. Materials and Methods 10
2.1 Virtual-reality-based highway driving simulator 10
2.2 Subjects 10
2.3 The lane keeping driving task 11
2.4 EEG data acquisition 12
2.5 Behavioral data analysis 12
2.6 EEG data analyses 13
2.6.1 EEG Data pre-processing 13
2.6.2 Independent Component Analysis 14
2.6.3 Dipole source localization 15
2.6.4 Moving-averaged power spectra analysis 15
2.6.5 Correlation analysis 16
2.6.6 Feature extraction and drowsiness estimation 16
2.6.7 LDE sorted spectral analysis 17
3. Results 18
3.1 OM and FCM ICs clusters 18
3.2 Coherence between FCM and OM component 20
3.3 Relationship between FCM Component and Forehead Component 20
3.4 LDE Estimation 21
3.5 LDE sorted spectral analysis of ICA components 23
4. Discussion 24
4.1 Drowsiness detection 24
4.2 Coupling between FCM and OM ICs clusters. 25
4.3 EEG phenomenon comparing to other studies 25
4.4 Selecting several forehead channels comparison 26
5. Conclusions 27
6. References 28
[1] E. L. Wienner, “Vigilance and inspection”, J. S. Warm (ed.), Sustained Attention in Human Performance (John Wiley, New York) , 1984, 207±246
[2] G.A. Ryan, “Road trafc crashes by region in western Australia.”, Hartley, L. (Ed.), Fatigue & Driving, 1995, Taylor & Francis, London, pp. 51–57.
[3] M. Shuman, “Asleep at the wheel.” Trafc Safety, January/ February, 1992.
[4] D. Royal, “Volume I—Findings report; national survey on distracted and driving attitudes and behaviours, 2002,” The Gallup Organization, Washington, D.C., Tech. Rep. DOT HS 809 566, Mar. 2003.
[5] D. Chaput, C. Petit, S. Planque, and C. Tarrière, "Un système embarqué de étection de l'hypovigilance," Journées d’études: le maintien de la vigilance dans les Transports,Lyon, France, 1990.
[6] J. Fukuda, E. Akutsu, and K. Aoki, "Estimation of driver's drowsiness level using interval of steering adjustment for lane keeping," JSAE Review, 1995, Society of Automotive Engineers of Japan, vol. 16, pp. 197-199.
[7] R. Grace, V. E. Byrne, D. M. Bierman, J. M. Legrand, D. Gricourt, B. K. Davis, J. J. Staszewski, and B. Carnahan, “A drowsy driver detection system for heavy vehicles,” in Proc. 17th AIAA/IEEE/SAE Conf. Digital Avionics Systems, vol. 2, Nov. 1998, pp. I36/1–I36/8.
[8] C. A. Perez, A. Palma, C. A. Holzmann, and C. Pena, “Face and eye tracking algorithm based on digital image processing,” Proc. IEEE Int. Conf. Systems, Man, Cybernetics, vol. 2, Oct. 2001, pp. 1178–1183.
[9] T. Pilutti and G. Ulsoy, “Identication of driver state for lane-keeping tasks,” IEEE Trans. Syst, Man, Cybern. A, Syst. Humans, vol. 29, pp. 486–502, Sep. 1999.
[10] J. C. Popieul, P. Simon, and P. Loslever, “Using driver’s headmovements evolution as a drowsiness indicator,” in Proc. IEEE Int. Intelligent Vehi- cles Symp., Jun. 2003, pp. 616–621.
[11] J. Qiang, Z. Zhiwei, and P. Lan, “Real-time nonintrusive monitoring and prediction of driver fatigue,” IEEE Trans. Veh. Technol., vol. 53, pp. 1052–068, Jul. 2004
[12] R. Grace, V. E. Byrne, D. M. Bierman, J. M. Legrand, D. Gricourt, R. K. Davis, J. J. Staszewski, and B. Carnahan, "A drowsy driver detection system for heavy vehicle," presented at Proceedings of the 17th Digital Avionics Systems Conference, 1998.
[13] D. F. Dinges, M. Mallis, G. Maislin, and J. W. Powell, "Evaluation of techniques for ocular measurement as an index of fatigue and as the basis for alertness management," National Highway Traffic Safety Administration 1998.
[14] Matsuoka Takayuki, Yokoyama Kiyoko, Mizuno Yasufumi, Takata Kazuyuki “Estimation of Drowsiness While Driving Using Experimentally-derived Time Series of Heart Rate Variability.” Bulletin of Daido Institute of Technology 2000
[15] J.A. Horne, L.A. Reyner, “Counteracting driver sleepiness: effects of napping, caffeine, and placebo” Psychophysiology 33, 1996, 306–309.
[16] J. A. Stern, D. Boyer, and D. Schroeder, “Blink rate: a possible measure of fatigue,” Human Factors, 1994, vol. 36, no. 2, pp. 285–297.
[17] T.-P. Jung, S. Makeig, M. Stensmo, and T. J. Sejnowski, “Estimating alertness from the EEG power spectrum,” IEEE Trans.Biomed. Eng., 1997, vol. 44, no. 1, pp. 60–69.
[18] S.Makeig and T.-P. Jung, “Changes in alertness are a principalcomponent of variance in the EEG spectrum,” Neuroreport, 1995, vol. 7, no. 1, pp. 213–216.
[19] M. Matousek and I. Peters´ en, “A method for assessing alertness uctuations from EEG spectra,” Electroencephalography and Clinical Neurophysiology, 1983, vol. 55, no. 1, pp. 108–113.
[20] S. Makeig and M. Inlow, “Lapses in alertness: coherence of uctuations in performance and EEG spectrum,” Electroencephalography and Clinical Neurophysiology, 1993, vol. 86, no. 1, pp. 23–35.
[21] J. Qiang, Z. Zhiwei, and P. Lan, “Real-time nonintrusive monitoring and prediction of driver fatigue,” IEEE Trans. Veh. Technol. , 2004, vol. 53, no. 4, pp. 1052–1068.
[22] S. Makeig and T.-P. Jung, “Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness,” Cognitive Brain Research, 1996, vol. 4, no. 1, pp. 15–25.
[23] Klimesch, W., “EEG alpha and theta oscillations reect cognitive and memory performance: a review and analysis.” Brain Research Reviews 29, 1999, 169–195.
[24] T.P. Jung, S. Makeig, M. Stensmo, and T.J. Sejnowski, “Estimating alertness from the EEG power spectrum,” IEEE Trans.Biomed. Eng. , 1997, vol. 44, no. 1, pp. 60–69.
[25] S.Makeig and T.P. Jung, “Changes in alertness are a principal component of variance in the EEG spectrum,” Neuroreport, 1995, vol. 7, no. 1, pp. 213–216.
[26] P. Parikh and E.Micheli-Tzanakou, “Detecting drowsiness while driving using wavelet transform,” in Proc. IEEE 30th Annual Northeast on Bioengineering Conf., pp. 79–80, Apr. 2004.
[27] H.J. Park, J.S. Oh, D.U. Jeong, K.S. Park, “Automated sleep stage analysis using hybrid rule-based and case-based reasoning,” Computers and Biomedical Research, Volume 33, Issue 5, October 2000, Pages 330-349
[28] C.T. Lin, R.C. Wu, T.P. Jung, S.F. Liang, T.Y. Huang, “Estimating Driving Performance Based on EEG Spectrum Analysis” EURASIP Journal on Applied Signal Processing, 2005
[29] J.C. Chiou, L.W. Ko, C. T. Lin, C. T. Hong, T. P. Jung, S. F. Liang, and J. L. Jeng, “Using Novel MEMS EEG Sensors in Detecting Drowsiness Application,” 2006 IEEE Biomedical Circuits and Systems Conference (BioCAS 2006), London, United Kingdom, Nov. 29-Dec. 1, 2006.
[30] C. T. Lin, R. C. Wu, T. P. Jung, S. F. Liang, and T. Y. Huang, “Estimating alertness level based on EEG spectrum analysis,” EURASIP J. Appl. Signal Process. Mar. 2005, vol. 2005, no. 19, pp. 3165–3174.
[31] C. T. Lin, R. C. Wu, S. F. Liang, W. H. Chao, Y. J. Chen, and T. P. Jung, “EEG-based drowsiness estimation for safety driving using independent component analysis,” IEEE Trans. Circuits Syst. I. Dec. 2005, Reg. Papers, vol. 52, no. 12, pp. 2726–2738.
[32] J. Hendrix, “Fatal crash rates for tractor-trailers by time of day,” in Proc.Int. Truck and Bus Safety Res. Policy Symp. 2002, pp. 237–250.
[33] H. Ueno, M. Kaneda, and M. Tsukino, “Development of drowsiness detection system,” in Proc. Vehicle Navigation and Information Systems Conference (VNIS ’94), 1994, pp. 15–20, Yokohama, Japan, August–September.
[34] T.-P. Jung, S. Makeig,M. Stensmo, and T. J. Sejnowski, “Estimating alertness from the EEG power spectrum,” IEEE Trans. Biomed. Eng. 1997, vol. 44, no. 1, pp. 60–69.
[35] S.Makeig and T.-P. Jung, “Changes in alertness are a principal component of variance in the EEG spectrum,” Neuroreport, 1995, vol. 7, no. 1, pp. 213–216.
[36] J. Beatty, A. Greenberg, W. P. Deibler, and J. O’Hanlon, “Operant control of occipital theta rhythm affects performance, in a radar monitoring task,” Science, 1974, vol. 183, pp. 871–873.
[37] C. Jutten and J. Herault, “Blind separation of sources I. An adaptive algorithm based on neuromimetic architecture,” Signal Process. 1991, vol. 24, pp. 1–10.
[38] J. F. Cardoso and A. Souloumiac, “Blind beamforming for non Gaussian signals,” IEEE Proc. F, 1993, vol. 6, pp. 362–370.
[39] P. Comon, “Independent component analysis — A new concept?,” Signal Process. 1994, vol. 36, pp. 287–314.
[40] A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Computat. 1995, vol. 7,pp. 1129–1159.
[41] J. F. Cardoso and B. Laheld, “Equivariant adaptive source separation,” IEEE Trans. Signal Process. 1996, vol. 45, pp. 434–444.
[42] D. T. Pham, “Blind separation of instantaneous mixture of sources via an independent component analysis,” IEEE Trans. Signal Process. 1997, vol. 44, pp. 2768–2779.
[43] M. Girolami, “An alternative perspective on adaptive independent component analysis,” Neural Computat.1998, vol. 10, pp. 2103–2114.
[44] T. W. Lee, M. Girolami, and T. J. Sejnowski, “Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources,” Neural Computat. 1999, vol. 11, pp. 606–633.
[45] S. Makeig, A. J. Bell, T. P. Jung, and T. J. Sejnowski, “Independent component analysis of electroencephalographic data,” Advances in Neural Information Process. Syst.1996, vol. 8, pp. 145–151.
[46] T. P. Jung, C. Humphries, T. W. Lee, S. Makeig, M. J. McKeown, V. Iragui, and T. J. Sejnowski, “Extended ICA removes artifacts from electroencephalographic recordings,” Advances in Neural Information Process. Syst. 1998, vol. 10, pp. 894–900.
[47] T. P. Jung, S. Makeig, C. Humphries, T. W. Lee, M. J. McKeown, V. Iragui, and T. J. Sejnowski, “Removing electroencephalographic artifacts by blind source separation,” Psychophysiology. 2000 Mar;37(2):163-78.
[48] T. P. Jung, S. Makeig, W. Westerfield, J. Townsend, E. Courchesne, and T. J. Sejnowski, “Analysis and visulization of single-trial event-related potentials,” Hum Brain Mapp. 2001 Nov;14(3):166-85.
[49] A. Yamazaki, T. Tajima, and K. Matsuoka, “Convolutive independent component analysis of EEG data,” in Ann. Conf. SICE, vol. 2, Aug. 2003, pp. 1227–1231.
[50] A. Meyer-Base, D. Auer, and A.Wismueller, “Topographic independent component analysis for fMRI signal detection,” in Proc. Int. Joint Conf. Neural Networks, vol. 1, Jul. 2003, pp. 601–605.
[51] M. Naganawa, Y. Kimura, K. Ishii, K. Oda, K. Ishiwata, and A. Matani, “Extraction of a plasma time-activity curve from dynamic brain pet images based on independent component analysis,” IEEE Trans. Biomed.Eng., vol. 52, pp. 201–210, Feb. 2005.
[52] R. Liao, J. L. Krolik, and M. J. McKeown, “An information-theoretic criterion for intrasubject alignment of FMRI time series: Motion corrected independent component analysis,” IEEE Trans. Med. Imag., vol. 24, pp. 29–44, Jan. 2005.
[53] Delorme, A. and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Neurosci Methods, 2004. 134(1): p. 9-21.
[54] S. Chatterjee and A. S. Hadi, “Influential observations, high leverage points, and outliers in linear regression,” Statistical Science, Vol. 1, No. 3 (Aug., 1986), pp. 379-393.
[55] D. M. Halliday, J. R. Rosenberg, A. M. Amjad, P. Breeze, B. A. Conway and S. F. Farmer, “A framework for the analysis of mixed time series/point process data–theory and application to the study of physiological tremor, single motor unit discharges and electromyograms.” Prog. Biophys. Mol. Biol., 1995, 64: 237–278.
[56] P. Rappelsberger, and H. Petsche, “Probability mapping: power and coherence analyses of cognitive processes.” Brain Topogr., 1988, 1: 46–54.
[57] C.T. Lin, R.C. Wu, S.F. Liang, W.H. Chao, Y.J. Chen, T.P. Jung, “EEG-Based Drowsiness Estimation for Safety Driving Using Independent Component Analysis,” in IEEE transaction on circuits and system-I: Regular papers, Vol. 52, NO. 12, December 2005
[58] S. Makeig, T. P. Jung, “Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness.” Brain Res Cogn Brain Res. 1996 Jul;4(1):15-25.
[59] L De Gennaro, M Ferrara, G Curcio, R Cristiani, ”Antero-posterior EEG changes during the wakefulness–sleep transition. ” Clin Neurophysiol.2001 Oct;112(10):1901-11
[60] L. De Gennaro, F. Vecchio, M. Ferrara, G. Curcio, P. Maria Rossini, and C Laudio Babiloni,” Changes in fronto-posterior functional coupling at sleep onset in humans “ J. Sleep Res. (2004) 13, 209–217
[61] W. Dement, N. Kleitman, “Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming”, Electroencephalogr. Clin. Neurophysiol. 9(1957) 673–690.
[62] R. D. Ogilvie, I.A. Simons, R. H. Kuderian, T. MacDonald, J. Rustenburg, “Behavioral, event-related potential, and EEG/FFT changes at sleep onset”, Psychophysiology. 1991 Jan;28(1):54-64.
[63] K. A. Brookhuis, D. De Waard and S. H. Fairclough ,”Criteria for driver impairment”, Ergonomics, 2003, VOL. 46, NO. 5, 433 ± 445
[64] H. Tanaka, M. Hayashi, T. Hori, “Topographical characteristics and principal component structure of the hypnagogic EEG”, Sleep 20, 1997, 523–534
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊