跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳信學
研究生(外文):Shueh-Shin Chen
論文名稱:冷加工對2205雙相不銹鋼氫脆及機械性質之影響
論文名稱(外文):The Effect of Cold Work on Hydrogen Embrittlement and Mechanical Properties in 2205 Duplex Stainless Steel
指導教授:吳建國吳建國引用關係
指導教授(外文):Jiann-Kuo Wu
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:102
中文關鍵詞:氫脆氫原子微印技術雙相不銹鋼冷加工
外文關鍵詞:hydrogen embrittlementhydrogen microprint techniqueduplex stainless steelcold work
相關次數:
  • 被引用被引用:0
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在探討冷加工處理後對2205雙相不銹鋼氫脆及機械性質的影響。而實驗主要利用電化學氫滲透量測、氫原子微印技術及慢速率拉伸試驗,針對固溶處理、冷加工20%及40%後2205雙相不銹鋼的氫脆性與氫原子擴散方式的關係進行探討。
電化學氫滲透實驗結果發現,有效擴散速率隨著冷加工量的增加而降低,視固溶量則隨著冷加工量的增加而提高,且冷加工後產生微裂縫,故滲透速率隨著冷加工量的增加而提高。
在慢速率拉伸試驗中,最大抗拉強度隨著冷加工量的增加而增加,相對地,延伸率則隨著冷加工量的增加而減少;充氫後氫原子進入試片中,導致延伸率都有降低的趨勢,但最大抗拉強度只有稍微降低。由破斷面觀察,充氫後試片由延性破壞轉變為脆性破壞,並有二次裂縫的發生。這些結果指出經過冷加工處理後對氫脆較為敏感。
根據氫原子微印技術結果,發現晶界上並沒有觀察到銀原子的分佈,所以氫原子主要為晶格擴散,且在肥粒鐵相中之氫滲透速率和擴散速率高於沃斯田鐵相,當試片冷加工40%後,觀察到的銀原子分佈全部都在肥粒鐵相中發現,故肥粒鐵相形成氫原子唯一的擴散路徑。
The aim of this work is to study the effect of cold work on hydrogen embrittlement and mechanical properties in 2205 duplex stainless steel. Hydrogen embrittlement of solution treatment, 20 and 40% cold worked 2205 duplex stainless steels has been evaluated by using electrochemical permeation measurment, hydrogen microprint technique and tensile test in this study.
For electrochemical permeation measurement, it is known that hydrogen effective diffusivity decrease with increasing cold work, while hydrogen concentration increase with the cold work. Cold work may cause some micro-crack in microstructure, thus resulting in the high rate of hydrogen permeation.
For slow strain rate tests, the ultimate tensile strength increases with the amount of cold work, while elongation decreases with cold work. After hydrogen charging, hydrogen atoms diffused into the microstructure, resulting the elongation decayed significantly, while the ultimate tensile strength slightly decreased. The fractography of precharged specimens shows that the ductile fracture has changed to the brittle fracture, and some hydrogen-assisted secondary cracks were also observed in the specimens.
According to the results of hydrogen microprint technique, it is observed that no silver atoms were detected on the grain boundary; this indicates that hydrogen atoms were mainly lattice diffusion. Hydrogen atom exhibited higher permeation rate and diffusivity in ferritic phase than that in austenitic phase. It is observed that the silver atoms were exclusively detected in ferritic phase of 40% cold worked specimen. Ferritic phase in duplex stainless steel is the main diffusion path for hydrogen atoms. These results exhibit that the cold worked duplex stainless steel were more susceptible to hydrogen embrittlement than annealed specimen.
目錄
目錄………………………………………………………………………I
圖目錄………………………………………………………..………... III
表目錄…………………………………………………………………..VI
中文摘要…………………………………………………………………1
英文摘要…………………………………………………………………2
第一章 前言……………………………………………………………..4
第二章 文獻回顧………………………………………………………..6
2.1 2205雙相不銹鋼簡介……………………………………....6
2.1.1 2205雙相不銹鋼……………………………...………6
2.1.2 合金成分對雙相不銹鋼的影響……………………..6
2.1.3 顯微結構對2205雙相不銹鋼的影響…………….…8
2.2 氫脆……………………………………………………….10
2.3 冷加工對氫脆及機械性質影響……………………….…11
第三章 理論背景………………………………………………………15
3.1 氫脆理論………………………………………….………15
3.2 氫脆機構……………………………………….…………16
3.3 氫溶解度及捕集位置分類與特性……………………….18
3.4 氫對材料機械性質影響………………………….………23
3.5 氫破壞種類及原因………………………….……………26
3.6 氫破壞之防治方法………………………..….…….…….31
3.7 電化學氫滲透理論……………………………….………34
3.8 氫原子微印技術………………………………………….41
第四章 實驗步驟…………………………………………..…………..49
4.1 材料試片準備……………………………………………49
4.2 金相組織觀察及微硬度試驗…………………………….49
4.3 電化學氫滲透實驗……………………………………….52
4.4 慢速率拉伸試驗………………………………………….54
4.5 氫原子微印技術……………………………….…………58
第五章 結果與討論……………………………………...…………….60
5.1 金相組織及表面硬度…………………………….………60
5.2 電化學氫滲透實驗……………………………………….60
5.3 慢速率拉伸試驗………………………………….………67
5.3.1 慢速率拉伸試驗結果………………………………67
5.3.2 慢速率拉伸試驗破斷面觀察………………………72
5.4 氫原子微印技術………………………………...………..81
第六章 結論……………………………………………..……………..86
參考文獻………………………………………………………………..88
圖目錄
圖3-1 捕集位置與氫作用圖…………………………………………..17
圖3-2 臨界濃度之概念及相關參數。CK:臨界濃度;CH:被缺陷所捕集之氫濃度…………………………………………………..22
圖3-3 陽極應力腐蝕破裂與陰極敏感性氫脆之破裂機構比較…..…28
圖3-4 油槽管壁橫截面之氫泡腫機構………………………………..29
圖3-5 Nelson圖………………………………………………...………32
圖3-6 充氫時陰極電荷與水分子在試片表面的反應過程……….….35
圖3-7 氫原子進入材料之兩種模式…………………………………..36
圖3-8 電化學氫滲透實驗中,試片的邊界條件…………………..…38
圖3-9 lag time法則示意圖………………………………………….…40
圖3-10 (a)氫原子微印技術示意圖,(b)AgBr顆粒在試片表面分佈狀況………………………………………………………………..44
圖3-11 溴化銀顆粒間空隙之理論大小……………………………....47
圖3-12 溴化銀顆粒排列層數對氫原子微印技術解析度之影響:(a)單層溴化銀乳劑披覆,(b) 雙層溴化銀乳劑披覆………………48
圖4-1 2205雙相不銹鋼流程圖………………………………………..50
圖4-2 慢速率拉伸試驗試片尺寸規格………………………………..51
圖4-3 電化學氫滲透裝置圖…………………………………………..53
圖4-4 Watt浴法電鍍鎳操作環境裝置圖……………………………..55
圖4-5 拉伸試驗機系統SHIMADZU AG-250KNG…………………..57
圖4-6 氫原子微印技術裝置圖………………………………..………59
圖5-1 不同冷加工量的金相組織……………………………………..61
圖5-2 不同冷加工量的金相組織……………………………………..62
圖5-3 退火對2205雙相不銹鋼氫滲透的影響………………………65
圖5-4 冷加工20%對2205雙相不銹鋼氫滲透的影響………………65
圖5-5 冷加工40%對2205雙相不銹鋼氫滲透的影響………………66
圖5-6 冷加工對2205雙相不銹鋼應力-應變圖的影響………………68
圖5-7 冷加工對預充氫後2205雙相不銹鋼應力-應變圖的影響……68
圖5-8 不同冷加工量對充氫前後2205雙相不銹鋼應力-應變圖的影響………………………………………………………..………69
圖5-9 退火試片破斷面………………………………………………..73
圖5-10 冷加工20%試片破斷面………………………………………74
圖5-11 冷加工40%試片破斷面………………………………………75
圖5-12 退火預充氫試片破斷面………………………………………76
圖5-13 冷加工20%預充氫試片破斷面………………………………77
圖5-14 冷加工40%預充氫試片破斷面………………………………78
圖5-15 雙相不銹鋼中充氫前後兩相之應力-應變圖………………...80
圖5-16 2205雙相不銹鋼退火之氫微印結果…………………………82
圖5-17 2205雙相不銹鋼冷加工20%之氫微印結果…………………83
圖5-18 2205雙相不銹鋼冷加工40%之氫微印結果…………………84
表目錄
表3.1 材料內部氫原子捕集位置之分類……………………..…….…20
表3.2 材料內部缺陷對氫原子之束縛能……………………………...20
表3.3 高解析度自動輻射照相技術與氫原子微印技術比較………...43
表3.4 改良後之氫原子微印技術與改良前的比較………………...…46
表4.1 2205雙相不銹鋼之合金化學成分分析(wt%)……………….....51
表4.2 電鍍鎳溶液成份及配置環境………………………………...…56
表5.1 2205雙相不銹鋼經過不同冷加工量的洛氏硬度值………...…63
表5.2 2205雙相不銹鋼隨著不同冷加工量的氫滲透數據………..…66
表5.3 2205雙相不銹鋼隨著不同冷加工量的拉伸試驗數據………..71
1. Bela Leffler, Materials Performance, p. 60, 1990.
2. Richard E. Avery, Chemical Engineering Progress, p. 78, 1991.
3. Russell D. Kane, ASTM, STP-1210, 1993.
4. L. Z. Lin, J. of Materials Engineering & Performance, p. 734, Vol. 4(1), 1995.
5. P. Kangas & J. M. Nicholls, Materials and Corrosion Vol. 46, p. 354, 1995.
6. M. Barteri, F. Mancia and A. Tamba, Corrosion, p. 518, 1987.
7. T. Suzuki, H. Hasegawa, M. Watanabe and J. Jpn. Inst. Met., Vol. 32, p1171, 1968.
8. M. Kowaka, H. Nagano, T. Kudo, K. Yamanaka and Boshoku Gijiutsu, Corrosion Engineering, Vol. 30, p. 218, 1981.
9. W. Wessling and H. E. Bock,Stainless Steel, Vol. 77, p. 217, 1977.
10. K. Harada, Boshoku Gijiutsu, Corrosion Engineering, Vol. 26, p. 721, 1977.
11. M. Kowaka, H. Nagano, T. Kobayashi and M. Harada, Sumitomo Kinzoku (Sumitomo Metals), Vol. 28, p. 40, 1976.
12. T. G. Gooch, Welding in the world, Vol. 24, p. 148, 1986.
13. S. Bernhardsson: Proceeding Conference “Duplex stainless steel”, p. 185, 1991.
14. E. E. Denhard and R. R. Gaugh, ASTM, STP-425, P. 41, 1967.
15. A. J. Sedriks, Corrosion of Stainless Steels, p. 88, John Wiley & Sons, New York, 1979.
16. E. A. Lizlovs, ASTM, STP-516, p. 201, 1972.
17. M. Kowaka and H. Nagano, Tetsu to Hagane (J. Iron Steel Inst. Jpn), Vol. 61, p. 302, 1975.
18. H. Ogawa, I. Itoh, M. Nakada, Y. Hosoi and H. Oksda, Tetsu to Hagane(J. Iron Steel Inst. Jpn), Vol. 63, p. 605, 1977.
19. M. Kowaka, H. Nagano, K. Yamanaka and T. Kudoh, Boshoku Gijutsu, Corrosion Engineering, Vol. 30, p. 218, 1981.
20. J. W. Pugh and J. O. Nisbet, Trans. AIME, 188, p. 268, 1950.
21. R. J. Brigham, Materials Performance, Vol. 13, p. 29, 1974.
22. J. Foct and N. Akdut, Scripta Metallugrical et Materialia, Vol. 29, p. 153 , 1993.
23. W. T. Tsai, B. Reynders, M. Stratmann and H. J. Grabke, Corrosion. Sci, Vol. 34, p. 1647, 1993.
24. G. J. Theus and R. W. Staehl, NACE, p. 845, Houston, 1978.
25. C. R. Clayton, L. Rosenzweig, M. Oversluizen and Y. C. Lu, Proc. 170th Meeting of the Electrochemical Society, San Diego, CA., U. S. A. p. 323, 1986.
26. Y. C. Lu, R. Bandy, C. R. Clayton and R. C. Newman, J. Electrochem Soc., Vol. 130, p. 1774, 1983.
27. M. Fujikura, K. Takada and K. Ishida, Trans. ISIJ 15, p. 464, 1975.
28. V. G. Gavriljuk, V. A. Duz’ and S. P. Jephimenko, Proc. 2nd Int. Conf. High Nitrogen Steels. HNS 90. Aachen, Germany, p. 100, 1990.
29. H. D. Solomon and T. M. Devine, Jr., Duplex Stainless Steels, 1982, (proc. Conf.) edt. R. A. Lula, Out. 25-28, St. Louis, Missouri, ASM 1983.
30. H. W. Schlapfer and J. Weber, Material and Technik, Vol. 2, p. 60, 1986.
31. Y. Ishizawa, T. Shimada and M. Tanimura, Corrosion, Paper No. 167, NACE, Houston, Texas, 1983.
32. J. Hochmann, A. Desestret, P. Jolly and R. Mayoud, NACE-5, ed. R. W. Staehle, J. Hochmann, R. D. McCright and J. E. Slater, Houston, TX: National Assocition Corrosion Engineers, p. 956, 1977.
33. A. Desestret and R. Oltra, Corrosion Sci., Vol. 20, p. 799, 1980.
34. T. Magnin, J. Le Coze and A. Desestret, Duplex stainless steels, ed. R. A. Lula, Metals Park, OH: ASM International, p. 535, 1983.
35. 嚴拱平,國立中興大學碩士論文,1995.
36. S. Shimodaira, M. Takano, T. Takizawa and H. Kamide, NACE, Houston, Texas, p. 1003, 1977.
37. S. L. Chou and W. T. Tsai, Material Sci., A270, p. 219, 1999.
38. M. A. V. Devanathan, Z. Stachrski, Proc. R. Soc., Edingburgh, Sect. A270, p. 90, 1962.
39. P. Manolatos and M. Jerome, Electrochimica Acta, Vol. 41, p. 359,1996.
40. Su-Il Pyun and R. A. Oriani, Corrosion Sci., Vol. 29, p. 485, 1989.
41. H. W. Jeng, L. H. Chiu, D. L. Johnson, and J. K. Wu, Metall. Trans. A, Vol. 21A. p. 3257, 1990.
42. D. M. Symons, Metall. And Materials Trans. A, Vol. 28A, p. 655, 1997.
43. A. Turnbull, M. Saenz de Santa Maria and N. D. Thomas, Corrosion
Sci., Vol. 29, p. 89, 1989.
44. R. P. Gangioff, R. P. Wei, Matall. Trans., Vol. 8A, p. 1043, 1977.
45. J. P. Hirth and H. H. Johnson, Corrosion, Vol. 32, p. 3, 1976.
46. L. S. Darken and R. P. Smith, Corrosion, Vol. 5, p. 1, 1949.
47. A. J. Kumnick and H. H. Johnson, Met. Trans., Vol. 5, p. 1199, 1974.
48. M. Martinez-Madrid, S. L. I. Chan and J. A. Charles, Met. Sci. and Tech., Vol. 1, p. 454, 1985.
49. C. F. Merlone, A. J. Funes, J. Ovejero-Garcia, Mem'' Etud. Sci. Rev. Metall., Vol. 82, p. 337, 1985.
50. J. A. Marquez, I. Matsushima and H. H. Uhlig, Corrosion, Vol. 26, p. 215, 1970.
51. E. Miyoshi, T. Tanaka, F. Terasaki and A. Ikeda, J. of Eng. For Industry, Nov., p. 1221, 1976.
52. M. Hashimoto and R. M. Latanision, Met. Trans. A, Vol. 19A, p. 2789, 1988.
53. M. H Ashimoto and R. M. Latanision, Met. Trans. A, Vol. 19A, p. 2799, 1988.
54. R. A. Meyn, Hydrogen Damage, edited by C. D. Beachem, p. 319, 1977.
55. I. M. Bernstein, Mater. Sci. Eng., Vol. 6, p. 1, 1976.
56. R. A. Oriani, Proc. Symp. Stress Corrosion Cracking, p. 32, 1967.
57. Zapffe, C., Sims, C., Trans. AIME, Vol. 145, p. 225, 1941.
58. 黃英邦,國立中興大學博士論文,2002.
59. C. Zapffe, and C. Sims, Trans. AIME. P. 145, 1941.
60. P. Batien, and P. Azou, Proc. Of World Met. Cong., 1st., ASM., p. 535, 1951.
61. Petch, N. J., Stables, P., Nature, Vol. 169, p. 842, 1952.
62. A. R. Troiano, Trans. ASM, Vol. 52, p. 54, 1960.
63. G. M. Pressouyre, Acta metal. Vol. 28, p. 895, 1980.
64. J. D. Fast, Philips Tech. Library 1, p. 128, 1965.
65. G. M. Pressouyre, Matell. Trans., p. 1571, 1979.
66. R. Gibala, Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, edited by R. W. Staehle, J. Hochmann, R. D. McCright, and I. E. S later, NACE-5, Houston. TX. P. 244, 1977.
67. N. R. Quick and H. H. Johnson, Acta. Metall. Vol. 26, p. 903, 1978.
68. W. Y. Choo and J. Y. Lee, Met. Trans., p. 135, 1982.
69. G. M. Pressouyre, Ph. D Thesis, Carnegie-Mellon University., 1972.
70. J. K. Tien, A. W. Thompson, I. M. Bernstein and R. J. Richards, Met. Trans., p. 821, 1976.
71. G. M. Pressouyre, Acta Met., Vol. 28, p. 895, 1980.
72. M. Smialowski, Hydrogen in Steels, Pergamon Press, p. 212, 1962.
73. M. Smialowski, Hydrogen in Steels, Pergamon Press, p. 227, 1962.
74. H. H. Johnson, J. G. Morlet and A. R. Troiano, Trans. Met. Soc. Of AIME, Vol.8, p. 526, 1958.
75. J. D. Fast, Interaction of Metals and Gases, Macmillan, p. 134, 1971.
76. T. Toh, W. M. Baldwin, Stress Corrosion Cracking and Embrittlement, edited By W. D. Robertson, John Wiley and Sons, New York, p. 326, 1956.
77. H. Matsui, S. Moriya, and H. Kimura, Proc. 4th Int. Conf., p. 291, 1976.
78. M. Smialowski, Corrosion Sci., p. 405, 1977.
79. S. Asano and R. Otsuka, Scr. Met., Vol. 10, p. 1095, 1976.
80. R. A. Oriani, Ann. Rev. Mater. Sci., Vol. 8, p. 327, 1978.
81. L. J. R. Cohen, J. A. Charles, and G. C. Smith, Hydrogen Effects on Material Behavior, edited By N. R. Moody and A. W. Thompson, p. 363, 1990.
82. J. P. Hirth and H. H. Johnson, Corrosion. P. 32, 1976.
83. 陳春霖,國立海洋大學碩士論文,1993.
84. 莊智欽,國立海洋大學碩士論文,1994.
85. A. Sieverts, W. Krumbhaar and E. Jurisch, Z. Physik. Chem., Vol. 77, p. 591, 1911.
86. M. G. Fontana, Corrosion Engineering, third edition, McGraw-Hill, New York, p. 146, 1987.
87. D. A. Jones, Principles and Prevention of Corrosion, Chap. 10, p. 341, 1992.
88. C. L. Chen, P. Y. Lee, D. J. Chiou, C. Y. Chu, J. Y. Lin and J. K. Wu, Corrosion Prevention and Control, Vol. 40, p. 71, 1993.
89. B. E. Wild and T. Shimada, Chinese J. Materials Sci., Vol. 19, p. 107, 1987.
90. L. H. Chiu, T. I. Wu and J. K. Wu, J. Material Sci. Letter, Vol. 12, p. 1582, 1993.
91. Y. C. Wu, W. Y. Wei, J. M. Chen and J. K. Wu, Tatung Journal, Vol. 19, p. 194, 1989.
92. J. M. Chen and J. K. Wu, Corrosion Sci., Vol. 33, p. 657, 1992.
93. J. M. Chen and J. K. Wu, Plating and Surface Finishing, Vol. 79, p. 74, 1992.
94. S. L. I. Chan, H. L. Lee and J. R. Yang, Hydrogen Effects on Materials Behavior, edited by N. R. Moody and A. W. Thompson, TMS, p. 145, 1990.
95. I. M. Bernstein and A. W. Tomphson, Hydrogen Embrittlement and Stress Corrosion Cracking, edited by R. Gibala and R. F. Hehemann, ASM, p. 135, 1984.
96. S. X. Xie and J. P. Hirth, Corrosion, Vol. 38, No. 9, p. 486. 1960.
97. Y. Kikuta and T. Araki, Hydrogen Effects in Metals, edited by I. M. Bernstein and A. W. Thompson, AIME, p. 309, 1981.
98. R. D. McCright, Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, edited by R. W. Staehle, J. Hochmann, R. D. McCright and J. E. Slater, NACE, Huston, Texas, p. 306, 1977.
99. M. A. V. Davanathan and Z. Stachurski, J. Electrochem. Soc. Vol. 110, p. 886, 1963.
100. J. O’M Bockris, J. McBreen and L. Nanis, J. Electrochem. Soc. Vol. 112, p. 1025, 1965.
101. K. Kiuchi and R. B. McLellan, Acta Metal. Vol. 31, p. 961, 1983.
102. J. P. Laurent and G. Lapasset, Int. J. Appl. Rad. Isot. Vol. 24, p. 213, 1973.
103. M. Aucouturier, G. Lapasset and T. Asaoka, Metallurgy, Vol. 11, p. 5, 1978.
104. J. Chene, J. Ovejero-Garcia, C. Paesde Oliveira, M. Aucouturier and P. Lacombe, J. Micros. Sp. Electr., Vol. 4, p. 37, 1979.
105. T. Asaoka, C. Dagbert, M. Aucouturier and J. Galland, Scripta Metall., Vol. 11, p. 467, 1977.
106. T. E. Perez and J. Ovejero-Garcia, Scripta Metall., Vol. 16, p. 161, 1982.
107. W. C. Luu and J. K. Wu, Mater. Lett., Vol. 24, p. 175, (1995).
108. W. C. Luu and J. K. Wu, Corrosion Sci., Vol. 38, p. 239, 1996.
109. W. C. Luu, H. S. Kuo and J. K. Wu, Corrosion Sci., Vol. 39, p. 1051, 1997.
110. 魯萬鈞,國立台灣海洋大學碩士論文,1994.
111. J. Ovejero-Garcia, J. Mater. Sci., Vol. 20, p. 2623, 1985.
112. R. D. McCright, Ph. D Thesis, The Ohio State Univ. Columbus, OH, 1971.
113. H. Huang and W. J. D. Shaw, Corrosion Sci., Vol. 51, p. 30, 1995.
114. A. Turnbull and R. B. Hutchings, Materials Science and Engineering, Vol. A177, p. 161, 1994.
115. F. Iacoviello, M. Habashi and M. Cavallini, Materials Science and Engineering, Vol. A224, p. 116, 1997.
116. 周賢亮,國立成功大學博士論文,1999.
117. W. C. Luu, P. W. Liu, and J. K. Wu, Corrosion Sci., Vol. 44, p. 1783, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top