|
[1] G. Gonçalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, and E. Fortunato, Influence of post-annealing temperature on the properties exhibited by ITO, IZO and GZO thin films, Thin solid films 515 (2007), pp. 8562-8566. [2] G.J. Fang, D.J. Li, and B.L. Yao, Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering, Vacuum 68 (2002), pp. 363-372. [3] D.Y. Song, P. Widenborg, W. Chin, and A.G. Aberle, Investigation of lateral parameter variations of Al-doped zinc oxide films prepared on glass substrates by rf magnetron sputtering, Solar Energy Materials and Solar Cells 73 (2002), pp. 1-20. [4] H. Kim, J. S. Horwitz, S. B. Qadri and D. B. Chrisey, Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition, Thin solid films 420-421 (2002), pp.107-111. [5] Tadatsugu Minami, Satoshi Ida and Toshihiro Miyata, High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation, Thin Solid Films 416 (2002), pp. 92-96. [6] http://www.eink.com/press/releases/pr70.html [7] http://www.physorg.com/news6180.html [8] http://www3.toshiba.co.jp [9] http://sanyo.com/r_and_d/jp/e/profile/field/energy_device_e.html [10] http://www.precoinc.com/ [11] C.M. Dunsky, Laser material processing in microelectronics manufacturing: status and near-term opportunities, Proceeding of SPIE 5713 (2005), pp. 200-214. [12] H. P. Ho, K. C. Lo, G. G. Siu, C. Surya, K. F. Li, and K. W. Cheah, Raman and photoluminescence spectroscopy of free-standing GaN separated from sapphire substrates by 532 nm Nd:YAG laser lift-off, Materials Chemistry and Physics 81 (2003), pp. 99-103. [13] Ralph Delmdahl, Excimers push machining limits for resolution, precision and efficiency, Laser Focus World, March, 2003. [14] S. Venkat and C. Dunsky, Laser patterning of ITO in flat panel display manufacturing, Proceeding of SPIE 6106 (2006), pp. 610602.1- 610602.7. [15] O. Yavas and M. Takai, High-speed maskless laser patterning of indium tin oxide thin films Journal of Applied Physics 38 (1999), pp.2553-2560. [16] O. Yavas and M. Takai, Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films, Journal of Applied Physics 85 (1999), pp.4207-4212. [17] J.G. Lunney, R.R. O’Neill, and K. Schulmeister, Excimer laser etching of transparent conducting oxides, Applied Physics Letters 59 (1991), pp.647-649. [18] J.G. Liu, C.H. Chen, J.S. Zheng, and J.Y. Huang, CO2 laser direct writing of silver lines on epoxy resin from solid film, Applied Surface Science 245 (2005), pp. 155-161. [19] D. Farson, H.W. Choi, K.R. Kim and S.K. Hong, Direct write patterning of ITO film by femtosecond laser ablations, 6th International Symposium on Laser Precision Microfabrication, Williamsburg VA, U.S.A., April 4-8 2005, pp.583-588. [20] H. J. Booth, Recent applications of pulsed lasers in advanced materials processing, Thin Solid Films 453-454 (2004), pp.450-457. [21] Y.C. Chan, Y.L. Lam, Y. Zhou, F.L. Xu, C.Y. Liaw, W. Jiang and J. Ahn, Development and applications of a laser writing lithography system for maskless patterning, Optical Engineering 37 (1998), pp.2521-2530. [22] O.A. Ghandour, D. Constantinide, and R. Sheets, Excimer ablation of ITO on flexible substrates for large format display application, Proceedings of SPIE 4637 (2002), pp.90-101. [23] R. Tanaka, T. Takaoka, H. Mizukami, T. Arai and Y. Iwai, Laser etching of indium tin oxide thin films by ultra-short pulsed laser, Proceeding of SPIE 5063 (2003), pp.370-373. [24] X.Y. Li, X.Y. Zeng, H.L. Li and X.J. Qi, Laser direct fabrication of silver conductors on glass boards, Thin Solid Films 483 (2005), pp.270-275. [25] T. Honma, Y. Benino, T. Fujiwara and Takayuki Komatsu, Line patterning with large refractive index changes in the deep inside of glass by nanosecond pulsed YAG laser irradiation, Solid State Communications 135 (2005), pp.193-196. [26] Yasuhiro OKAMOTO, Yoshiyuki UNO and Yasuyuki HIRAO, Micro machining of ITO film by LD pumped SHG YAG laser, Proceeding of SPIE 4830 (2003), pp.40-45. [27] T. Baldacchini, A.C. Pons, J. Pons, C.N. LaFratta and J.T. Fourkas, Multiphoton laser direct writing of two-dimensional silver structures, Optical Society of America 13 (2005), pp.1275-1280. [28] D.L. Shealy, Optical design of laser beam shaping systems, Proceeding of SPIE 4832 (2002), pp.344-358. [29] S. Corbett, J. Strole, K. Johnston, J. Swenson and W. Lu, Laser direct exposure of photodefinable polymer masks using shaped-beam optics, IEEE Transactions of Electronics Packaging Manufacturing 28 (2005), pp.312-321. [30] J. Cordingley, Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers, Optical Society of America 32 (1993), pp.2538-2542. [31] D. Schaefer, J. Ihlemann, and F. Simon, "Diffractive beam shaping for partially coherent UV-laser beams," in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DTuD9. [32] J.S. Liu and M.R. Taghizadeh, Iterative algorithm for the design of diffractive phase elements for laser beam shaping, Optics Letters 27 (2002), pp.1463-1465. [33] Yoshie Uchiyama, Yasuhito Myoi, Hiroaki Tobuse, Masahiko Sakamoto, Yoshihide Nishida. Tatsuya Iwasa, Kouhei Murakami and Masaham Yoshida, Development of outer lead bonding apparatus with a focused YAG laser beam for high quality TCP bonding, Proceeding of IEEE (1994), pp.268-272. [34] S. Gordon and M.T. Hillery, Development of a high-speed CNC cutting machine using linear motors, Journal of Materials Processing Technology 166 (2005), pp.321–329. [35] http://www.lasermicronics.com/services/business-activities/ [36] D.L. King, B. R. Hansen and W.M. Lehrer, Development of a ulti-purpose, pulsed-laser system for solar cell processing applications, Proceeding of IEEE (1990), pp.278-283. [37] E.C. Kinzel, X. Xu, B.R. Lewis, N.M. Laurendeau and R.P. Lucht, Direct writing of conventional thick film inks using MAPLE-DW process, Journal of Laser Micro/Nanoengineering 1 (2006), pp.74-78. [38] Naoaki Ikeda, Takashi Akaba, Fumiaki Inoue, Shinji Takahashi and Osamu Noda, Diode-pumped solid-state ultraviolet laser micro processing system, Mitsubishi Heavy Industries, Ltd. Technical Review 40 (2003), pp. 1-5. [39] http://www.synova.ch/english/synova.html [40] P.M. Ferreira and C.R. Liu, An analytical quadratic model for the geometric error of a machine tool, Journal of Manufacturing Systems 5 (1986), pp.51-63. [41] John M. Fines, Arvin Agah, Machine tool positioning error compensation using artificial neural networks, Engineering Applications of Artificial Intelligence 21 (2008), pp.1013-1026. [42] E.H.K. Fung, S.M. Yang, An approach to on-machine motion error measurement of a linear slide, Measurement 29 (2001), pp.51-62. [43] H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, F. Delbressine, Geometric error measurement and compensation of machines - An update, CIRP Annals - Manufacturing Technology 57 (2008), pp.660-675. [44] K.K. Tan, S.N. Huang, T.H. Lee, Geometrical error compensation and control of an XY table using neural networks, Control Engineering Practice 14 (2006), pp.59-69. [45] H.F.F. Castro, M. Burdekin, Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer, International Journal of Machine Tools & Manufacture 43 (2003), pp.947-954. [46] K.K. Tan, S. Huang, Geometrical error compensation of machines with significant random errors, ISA Transactions 44 (2005), pp.43-53. [47] Daisuke Kono, Atsushi Matsubara, Iwao Yamaji, Tomoya Fujita, High-precision machining by measurement and compensation of motion error, International Journal of Machine Tools & Manufacture 48 (2008), pp.1103-1110. [48] S.J Chang, C.H Liu and L.W. Ji, Semiconductor laser, Science Development 349 (2002), pp.14-21. (in Chinese) [49] http://www.schott.com/english/ [50] http://www.laser-zentrum-hannover.de/en/index.php [51] H. Hügel, B.G. Teubner, Strahlwerkzeug Laser, Stuttgart, 1992. [52] Naiaki Ikeda, Takashi Inoue, Fumiaki Inoue, Shinji Takahashi, and Osamu Noda, Diode-Pumped Solid-State Ultraviolet Laser Micro Processing System, Mitsubishi Heavy industries Ltd. Technical Review 40 (2003), pp.1-5. [53] Z. Illyefalvi-Vitéz, Laser processing for microelectronics packaging applications, Microelectronics Reliability 41 (2001), pp.563-570. [54] Eugene Hecht, Optics, Addison Wesley, San Francisco, 2002, pp.115-131 [55] C.K. Ho, H.C. Man, T.M. Yue, C.W. Yuen, Laser etching of polymer masked leadframes, Applied Surface Science 109-110 (1997), pp.236–241. [56] http://www.cmxr.com/Industrial/Handbook/Chapter3.htm [57] http://www.cmxr.com/Industrial/Handbook/Chapter5.htm [58] S.H Lu, FPD mask of technology - specific large-scale movements - to achieve the cost reduction of large TFT-LCD, Metal Industries Research & Development Centre, 2008. (in Chinese) [59] O.A. Ghandour, D. Constantinide, R. Sheets, Excimer ablation of ITO on flexible substrates for large format display applications, Proceeding of SPIE 4637 (2002), pp.90-101. [60] Marc Klosner, Kanti Jain, Massively parallel, large-area maskless lithography, Applied Physics Letter 84 (2004), pp.2880-2882. [61] C.T. Chen, B.C. Wu, A.D. Jiang, G.M. You, A new ultraviolet SHG crystal beta-BaB2O4, Scientia Sinica, Series B 28 (1985), pp.235-243. [62] F.C. Zumsteg, J.D. Bierlein, T.E. Gier, KxRb1−xTiOPO4: A new nonlinear optical material, Journal of Applied Physics 47 (1976), pp.4980-4985. [63] Y.C. Wu, T. Sasaki, S. Nakai, A. Yokotani, H.G. Tang, C.T. Chen, CsB3O5: A new nonlinear optical crystal, Applied Physics Letter 62 (1993), pp.2614-2615. [64] Liming He, Yoshiharu Namba, Yuji Narita, Wavelength optimization for machining metals with the harmonic generations of a short pulsed Nd:YAG laser, Precision Engineering 24 (2000), pp.245-250. [65] M.F. Chen, Y.P. Chen, W.T. Hsiao, Z.P. Gu, Laser direct write patterning technique of indium tin oxide film, Thin solid Films 515 (2007), pp.8515-8518. [66] W.M. Steen and J.N. Kamalu, Laser Cutting, Laser Material Processing, 1989. [67] J.C. Ion. Laser Processing of Engineering Materials: Principles Procedure and Industrial Application, Elsevier Butterworth-Heinemann, Burlington, MA, 2005:104-105 [68] http://perg.phys.ksu.edu/vqm/laserweb/Ch-4/C4s3t1p2.htm [69] B.H. Zhou and S.M. Mahdavian, Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser, Journal of Materials Processing Technology 146 (2004), pp.188-192. [70] M. Von Allmen, Laser-Beam Interactions with Materials, Springer-Verlag, Berlin, 1995. [71] F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New-York NY, 1985. [72] D.R. Dance, C.L. Skinner, K.C. Young, J.R. Beckett, C.J. Kotre, Additional factors for the estimation of mean glandular breast does using the UK mammography dosimetry protocol, Phys. Med. Biol. 45 (2000), pp.3225-3240. [73] H. Becker, U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures, Sensors and Actuators A: Physical 83 (2000), pp.130-135. [74] X. Zhang, W. Hendro, M. Fujii, T. Tomimura, and N. Imaishi, Measurements of the thermal conductivity and thermal diffusivity of polymer melts with the short-hot-wire method, International journal of thermophysics 23 (2002), pp.1077-1090. [75] L. Jakevičius, J. Butkus, A. Vladišauskas, Simulation of the pitch-catch of ultrasound waves at oblique incidence to the plane glass layer, ULTRAGARSAS, 55 (2005), pp.17-22. [76] P.B. Narottam, R.H. Doremus, Handbook of glass properties, Academic Press, New York NY, 1986. [77] S. Bäumer, Handbook of plastic optics, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005. [78] H.C. Lee, O. Park, The evolution of the structural, electrical and optical properties in indium-tin-oxide thin film on glass substrate by DC reactive magnetron sputtering, Vacuum 80 (2006), pp.880-887. [79] H.R. Fallah, M. Ghaseni, A. Hassanzadeh, H. Steki, The effect of deposition rate on electrical, optical and structural properties of tin-doped indium oxide (ITO) films on glass at low substrate temperature, Physica B 373 (2006), pp.274-279. [80] R. Teghil, D. Ferro, A. Galasso, A. Giardini, V. Marotta, G.P. Parisi, A. Santagata, P. Villani, Femtosecond pulsed laser deposition of nanostructured ITO thin films, Materials Science and Engineering: C 27 (2007), pp.1034-1037. [81] S.S. Kim, S.Y. Choi, C.G. Park, H.W. Jin, Transparent conductive ITO thin films through the sol-gel process using metal salts, Thin Solid Films 347 (1999), pp.155-160. [82] M.A. Green, Photovoltaics: technology overview, Energy Policy 28 (2000), pp.989-998. [83] M.A. Green, Third generation photovoltaics: solar cells for 2020 and beyond, Physica E 14 (2002), pp.65-70. [84] L.A. Dobrzański and A. Drygała, Laser processing of multicrystalline silicon for texturization of solar cells, Journal of Materials Processing Technology, 191 (2007), pp.228-231. [85] A. Wang, J. Zhao, and M. A. Green, 24% efficient silicon solar cells, Applied Physics Letter 57 (1990), pp.602-604. [86] J. Zhao, A. Wang, P. Altermatt, and M. A. Green, Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss, Applied Physics Letter 66 (1995), pp.3636-3638. [87] M.A. Green, J. Zhao, A. Wang, and S.R. Wenham, Very high efficiency silicon solar cells-science and technology, IEEE Transactions on Electron Devices 46 (1999), pp.1940-1947. [88] A. Rohatgi, S. Narasimha, A.U. Ebong and P. Doshi , Understanding and implementation of rapid thermal technologies for high-efficiency silicon solar cells. IEEE Transactions on Electron Devices 46 (1999), pp.1970–1977. [89] S.W. Park and J. Kim, Application of acid texturing to multi-crystalline silicon wafers, Journal of Korean Physics Society 43 (2003) pp.423-426. [90] M.J. Stocks, A.J. Carr, and A.W. Blakers, Texturing of polycrystalline silicon, Solar Energy Materials and Solar Cell 40 (1996), pp.33-42. [91] D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, Texturing industrial multicrystalline silicon solar cells, Solar Energy 76 (2004), pp.277-283. [92] S. Winderbaum, O.Reinhold, and F. Yun, Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells, Solar Energy Materials and Solar Cells 46 (1999), pp.239-248. [93] T.J. McKee, How lasers mark, Electro Technology 7 (1996), pp.27-30. [94] H. Presting, J. Konle, H. Kibbel, and F. Banhart, Growth studies of Ge-islands for enhanced performance of thin film solar cells, Physica E 14 (2002), pp.249-254. [95] Y. Wang and D.S. Xiong, The effect of laser surface texturing on frictional performance of face seal, Journal of Materials Processing Technology 197 (2008), pp.96-100. [96] M.J. Jackson and G.M. Robinson, Micromachining electrical grade steel using pulsed Nd-YAG lasers, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007), pp.451-454. [97] B. Tan and K. Venkatakrishnan, A femtosecond laser-induced periodical surface structure on crystalline silicon, Journal of Micromechanics and Microengineering 16 (2006), pp.1080-1085. [98] L.A. Dorzański, A.Drygała, P. Panek, M. Lipiński and P. Zięba, Application of laser in multicrystalline silicon surface processing, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007), pp.179-182. [99] S. Mwenifumbo, M. Li, J. Chen, A. Reye and W. Soboyejo, Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces, Journal of Material Science: Materials in Medicine 18 (2007), pp.9-23. [100] P. Campbell, S. R. Wwnham, and M. A. Green, Light trapping and reflection control with tilted pyramids and grooves, Proceeding of 20th IEEE Photovoltaic Specialists Conference 1 (1998), pp.713-716. [101] Paetzel, R., 2002. www.coherent.com/Downloads [102] A.F.M. Arif, A.Z. Shuja and B.S. Yilbas, Gas-assisted laser single-pulse heating: study of thermal stresses. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 215 (2001), pp.291-306. [103] K.T. Voisey and T.W. Clyne, Laser drilling of cooling holes through plasma sprayed thermal barrier coatings, Surface and Coatings Technology 176 (2004), pp.296-306. [104] B.S. Yilbas, S.Z. Shuja and M.O. Budair, Nano-second laser pulse heating and gas assisting jet considerations, International Journal of Machine Tools & Manufacture 40 (2000), pp.1023-1038. [105] W.O’ Neill and J.T. Gabzdyl, New developments in laser-assisted oxygen cutting, Optics and Lasers in Engineering 34 (2000), pp.355-367. [106] D.K.Y. Low, L. Li and A.G. Corfe, The influence of assist gas on the mechanism of material ejection and removal during laser percussion drilling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 214 (2000), pp.521-527. [107] S.Z. Shuja and B.S. Yilbas, The influence of gas jet velocity in laser heating - a moving workpiece case. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 214 (2000), pp.1059-1078. [108] W.F. Wu and B.S Chiou, Deposition of indium tin oxide films on polycarbonate substrates by radio-frequency magnetron sputtering, Thin solid Films 298 (1997), pp.221-227. [109] N. Al-Dahoudi, H. Bisht, C. Gobbert, T. Krajewski and M.A. Aegerter, Transparent conducting, anti-static and anti-static-anti-glare coatings on plastic substrates, Thin Solid films 392 (2001), pp.299-304. [110] http://spie.org/x16144.xml?ArticleID=x16144 [111] F. M. Chuang, M.W. Chang and S.G. Shiue ,Solution areas of three component afocal zoom system, Optik 101 (1995), pp.10-16. [112] http://www.cvimellesgriot.com [113] Copley controls corp., XenusTM Digital servomplifier for brushless or brush motors, 2005 [114] ZEBASE Optical design database user’s guide version 4.0, 1999. [115] M.F. Chen and Y.P. Chen, Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines, International Journal of Machine Tools & Manufacture 47 (2007), pp.1114-1124. [116] N.S. Nise, Control systems engineering, Redwood City, California, 1995. [117] W.Y Hsiao, W.T Hsiao and M.F. Chen, Positioning error compensation of linear motor motion control system, Mechatronics Magazine 67 (2004). (in Chinese) [118] C.R. Chuang, Development and Testing of Ultra-Precision Aerostatic Guideway System, MS -Thesis, Department of Mechatronics Engineering, National Changhua University of Education, Changhua, Taiwan, R.O.C., 2009. [119] M.F. Chen, Y.P. Chen, W.T. Hsiao, Two-Dimensional compensation Method for Positioning Error in Conventional X-Y tables, Journal of Advanced Mechanical Design, Systems, and Manufacturing 1 (2007), pp.595-604.
|