跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.156) 您好!臺灣時間:2025/11/28 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭文澤
研究生(外文):Hsiao, Wen-Tse
論文名稱:UV雷射加工系統研發與其在光電材料之應用
論文名稱(外文):Development of UV Laser Processing System and Its Application for the Photoelectric Materials
指導教授:陳明飛陳明飛引用關係
指導教授(外文):Chen, Ming-Fei
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:154
中文關鍵詞:雷射乾蝕刻雷射直寫UV雷射加工系統一維曲線擬合二維補償函數位置精度氧化銦錫電極圖案化熱分析表面粗化玻璃纖維雷射微鑽孔雷射劃線殘留
外文關鍵詞:Laser dry etchinglaser direct writingUV laser processing systemone-dimensional curve fittingtwo-dimensional compensation functionpositioning accuracyITOelectrode patterningthermal analysissurface treatmentGFRMlaser micro-drillinglaser scribingdebris
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著數位影音電子通訊產品的發展,可攜帶式個人電子商品普及化與市場商機,扮演著人們與數位電子產品之間的溝通橋樑。尤其是透明導電薄膜在平面顯示器相關製程技術發展之應用,傳統蝕刻技術需經過:光阻塗佈、曝光、顯影、烘烤、蝕刻、去光阻等多道製程步驟。因此,若可採用乾式蝕刻製程進行電極成型將可節省昂貴的製程設備與縮短製程所需要花費的時間與人力,並減少有機化學蝕刻液的使用。本研究係發展UV雷射加工系統與UV雷射材料加工製程特性之研究。在UV雷射加工系統人機介面建立,包括雷射加工介面、進給系統運動控制介面、進給系統誤差量測與補償介面、平面補償介面、參數調整介面等。在進給系統精度量測與補償技術係採用雷射干涉儀為載具量測直線定位誤差與平面誤差值。並建立一維曲線擬合與二維平面補償技術理論為架構針對UV雷射加工系統XY平台進行軟體補償。
高精密進給系統定位精度補償技術是UV雷射加工系統中相當重要的技術。以曲線擬合進行直線定位精度補償後可知,以1mm為量測間隔X軸定位誤差值由原先的11.5μm降低至5.7μm;Y軸誤差值由原先的26.2μm降低至3.4μm。以10mm為量測間隔X軸定位誤差由原先的9.9μm降低至5.5μm;Y軸誤差值由原先的24.7μm降低至1.6μm。同樣以雷射干涉儀為量測載具進行XY軸二維誤差補償函數建立,經由二維平面補償函數進行定位精度補償後可知,X軸最大誤差值由原先的9.5μm降低至1.2μm;Y軸最大誤差值由原先的12.4μm降低至2.9μm。且各點之座標幾乎都落在各個直線的交點上。
在光學系統分析上,採用Tracepro軟體建構雷射系統光路模型,包括雷射源、擴束鏡、反射鏡、振鏡掃瞄系統與聚焦系統之相對位置關係。並探討雷射光源在各反射鏡上的功率大小與能量分佈,藉此瞭解整體光路系統,作為整體光機設計的考量。
最後,本研究將利用所發展的三倍頻Nd:YAG UV雷射加工系統為架構,完成玻璃基板與塑膠基板透明導電薄膜雷射直寫電極圖案化之研究。除此之外,也針對硬脆材料微鑽孔與劃線加工、雷射加工熱分析、矽晶圓表面粗化處理、可撓式玻璃纖維基板切割,並探討其表面形貌、光電特性等。

Recently, with the rapid development of the electro-optical and semiconductor industry, manufacturing has diversified to cope with today’s demanding product design requirements. Examples include transparent films for flat panel displays, etching techniques, photoresist coating, and new means of exposing, baking and etching of photoresist materials. However, a superior new method, UV laser direct etching, is proposed. The benefits of this novel method include the reduction of investment required for semiconductor lithography equipment and a reduction in chemical waste.
The purpose of this thesis is to investigate the development of a UV laser processing system and its material processing characteristics. The human-machine software interface for this system includes a laser unit, feeding system control, error measurement/compensation and parameter setting. In addition, the feeding system for positioning and error compensation technique uses a laser interferometer for measuring positional accuracy and plane positional accuracy. Also there is a one-dimensional curve fitting and two-dimensional compensation function to correct the feeding system.
In the research and development of this laser processing system, Tracepro development software was used to simulate the laser’s optical paths. This determined how the laser source, beam expander, mirror, scanning system and focusing system would interact with each other. In addition, the software was used to design the various scan angles, laser output of the optical components. The design will help us understand the overall optical system and simulate the optical path for our system.
In the one-dimensional curve fitting method, the X and Y axis accuracy was increased from 11.5μm to 5.7μm and 26.2μm to 3.4μm respectively with a 1mm interval. When, the interval was 10mm, the X and Y axis accuracy was increased from 9.9μm to 5.5μm and from 24.7μm to 1.6μm respectively. For two-dimensional curve fitting, the X and Y axis maximum error values were decreased from 9.5μm to 1.2μm and 12.4μm to 2.9μm respectively.
This system uses a third harmonic generator UV laser processing system (a Nd:YAG laser) to complete dry etching of electrode patterns in Indium Tin Oxide (ITO) thin films coated on soda-lime glass and polycarbonate (PC) substrates. In addition, in brittle material, laser micro-drilling and laser scribing is used. Furthermore, software analysis is used on the thermal effect on transparent conductive oxide thin films, surface treatment of silicon substrate, and flexible glass fiber reinforced material (GFRM) substrate cut off using chilled air.
Finally, this paper discusses the effects that electronic properties, surface morphology, ablation (burn off) debris and substrate damage have on laser output power, pulse energy, pulse repetition rate and duration. This was measured by optical microscope (OM), scanning electron microscope (SEM) and a Hall effect system to analyze the quality of laser micromachining on different materials.

Contents ...........................................Ⅰ
Abstract (in English)...............................Ⅴ
Abstract (in Chinese)...............................Ⅶ
Acknowledgement.....................................Ⅷ
Table captions......................................Ⅸ
Figure captions.....................................Ⅹ
Notations and Abbreviations.........................ⅩⅦ

Chapter 1 Introduction...............................1
1.1 Backgrounds......................................1
1.1.1 Transparent conductive oxide (TCO) thin films..5
1.1.2 Laser electrode patterning technology of transparent conductive oxide films coated on flexible plastic substrates...........................................5
1.1.3 Laser electrode patterning technology of transparent conductive oxide films coated on glass substrates....7
1.2 Motivation and objectives........................9
1.3 Literatures review...............................10
1.3.1 TCO films ablation using laser direct write technique............................................10
1.3.2 Development of UV laser processing system......14
1.3.3 Error compensation technology of moving stages.15
1.4 Structure of the dissertation....................16

Chapter 2 Theory of laser material manufacturing processes............................................18
2.1 Introduction of laser processing.................18
2.2 Mechanism of laser processing....................19
2.2.1 Photothermal mechanism.........................21
2.2.2 Photochemical mechanism........................21
2.3 Laser interaction with materials.................21
2.3.1 Absorption and reflection of material..........22
2.3.2 Photo energies of laser source and bonding energies molecular bonding....................................23
2.3.3 Long-pulsed laser matter interaction...........25
2.3.4 Short-pulsed laser matter interaction..........26
2.4 Method of electrode patterning on TCO films......26
2.4.1 Traditional wet etching processes..............26
2.4.2 Laser mask projection method processing........28
2.4.3 Laser direct writing method processing.........28
2.5 Effect parameters of the laser processing system.31
2.5.1 Laser power and energy.........................31
2.5.2 Laser beam characteristics.....................34
2.5.3 Focusing system................................40

Chapter 3 Development of UV laser processing system..43
3.1 All components of laser processing system........43
3.1.1 Laser control units............................44
3.1.2 Optical element and choose right lens..........45
3.1.3 Optical system and optical path................47
3.2 Personal computer based system and mechanical component............................................53
3.2.1 PC-based control system........................53
3.2.2 Linear motor and driver........................54
3.2.3 Designing of human mechanical interface........55
3.3 Analysis of laser processing system..............56
3.3.1 Simulation of the optical path.................56
3.3.2 Simulation results with different scanner angle58
3.4 Adjustment parameters and error compensation of linear motor system.........................................61
3.4.1 PID control and adjustment steps of linear motor................................................61
3.4.2 Error measurement and compensation of feeding system...............................................64
3.4.3 Theory of positioning accuracy measurement.....65
3.4.4 Theory of least squares algorithm for curve fitting..............................................66
3.4.5 Positioning accuracy of linear and Plane measurement method...............................................68
3.4.6 Error compensation method using curve fitting..70
3.4.7 Error compensation method using Lagrangian interpolation........................................78

Chapter 4 Laser direct write patterning on TCO films and other applications...................................84
4.1 Analysis of thermal effect on transparent conductive oxide thin films ablated by UV laser.................84
4.1.1 Modeling of thermal analysis process...........84
4.1.2 Numerical simulation process...................86
4.1.3 Results and discussion.........................86
4.1.4 Case Ι- thermal analysis of polycarbonate (PC) substrate............................................88
4.1.5 Case Ⅱ- thermal analysis of glass substrate...90
4.1.6 Summary........................................92
4.2 Laser patterning Indium Tin Oxide thin films on glass substrate............................................92
4.2.1 Experimental system............................92
4.2.2 Laser scribing and laser direct writing technique formation complex electrode patterning...............93
4.2.3 Summary........................................98
4.3 Laser patterning with beam shaping on indium tin oxide thin films of glass/plastic substrate................98
4.3.1 UV laser processing system and sample preparation..........................................98
4.3.2 Laser beam shaping technique...................100
4.3.3 Laser forming of isolate line patterning on ITO/glass and ITO/PC substrates................................102
4.3.4 Complex electrode patterning on ITO/glass and ITO/PC substrates...........................................108
4.3.5 Summary........................................109
4.4 Effect of electronic properties on transparent conductive thin films by UV laser direct writing.....110
4.4.1 Micro-electrode patterning.....................110
4.4.2 Surface morphology, un-ablation characterization analyze and electrical conductivity measurement......111
4.4.3 Laser direct write electrode patterning on ITO films of polycarbonate substrate...........................112
4.4.4 Laser direct write electrode patterning on ITO films of soda-lime substrate...............................114
4.4.5 Electrical conductivity measurements...........115
4.4.6 Summary........................................115
4.5 Enhancing of optical performance of silicon substrate by laser surface treatment...........................116
4.5.1 Silicon substrates preparation.................118
4.5.2 Laser surface texturation path.................118
4.5.3 Results and discussion.........................119
4.5.4 Summary........................................124
4.6 Laser micro drilling with different methods for silicon wafer substrate......................................125
4.6.1 Experimental material..........................125
4.6.2 Laser drilling procedure.......................127
4.6.3 Research for case Ⅰ...........................128
4.6.4 Research for case Ⅱ...........................129
4.6.5 Research for case Ⅲ...........................130
4.6.6 Summary........................................132
4.7 Laser cutting of GFRM using assisted cooling-air generated by Vortex tube.............................133
4.7.1 Experimental setup.............................134
4.7.2 Experimental results...........................135
4.7.3 Summary........................................137
Chapter 5 Conclusions and outlooks...................138
References...........................................139
Vita and Publications................................147

Table captions
Table 2.1 Photo energies of various lasers and bonding energies of various molecular
bondings [55]……………………………………………………………….....24
Table 2.2 Size of glass substrates and mask with TFT-LCD production line [58].....………27
Table 2.3 The calculation results with different overlapping rate of laser beam diamete……40
Table 3.1 The specification of third harmonic generate (THG) Nd:YAG…………....………44
Table 3.2 Length formulas for singlet lenses[110]...................................................................47
Table 3.3 Specification of iron-core type linear motor…………………………..……...……54
Table 3.4 Specification of linear motor driver…………………………………………...…...55
Table 3.5 Relationship center coordinates of the Nd:YAG laser processing system……...….59
Table 3.6 Illustration the scan angle and power density of the work-piece………………..…59
Table 3.7 Laser output power versus pulse repetition frequency…………………………..…60
Table 3.8 Relationship between of PID control parameters and characterization [117]…...…64
Table 3.9 Linear displacement error measurement information………………………...……69
Table 3.10 15th degree curve fitting coefficient for traveling forward…………...……….…..72
Table 3.11 5th degree curve fitting coefficient for traveling forward……………………....…72
Table 3.12 Coefficients of segmental method……………………………………………...…76
Table 3.13 The function of two variables z=f(x, y)…………………………………………...79
Table 3.14 Values of before compensated positioning errors in the XY table………………..82
Table 3.15 Values of after compensated positioning errors in the XY table……………...…..83
Table 4.1 Physical parameters of polycarbonate substrate in simulation [72-76]…………….86
Table 4.2 Electronic and optical properties of the ITO/PC and ITO/Glass…………………99
Table 4.3 Specification of Nd:YAG laser processing system………………………………..118

Figure captions
Figure 1.1 Applications of laser micromachining [10]. (a) cutting, (b) welding, (c) micro-via
drilling, and (d) marking……………………………………………………...……2
Figure 1.2 Microelectronics industry for use of laser micromachining of common applications
and key segments [11]……………………………………………………………...2
Figure 1.3 Micro-via on communication PCBs (a) SEM photograph of matrix micro-via
drilling on PCBs and (b) SEM photograph of laser microvia drilling…..…..3
Figure 1.4 Multi-construction on silicon based interconnect with low-k materials [11]. (a)
Silicon based substrate interconnect layer with low-k materials and (b) Copper
interconnects with 7 layer structures and low-k dielectric layer used 90 nm
processor……………………………………………………………………..……4
Figure 1.5 SEM micrograph of laser lift-off GaN crystal [12]…………………………..……4
Figure 1.6 Microfluidic structure are machined into quartz by laser direct writing [13]………5
Figure 1.7 Product of flexible substrates application (a) SONY electronic reading [6] and (b)
Philips Readius Rollable Display [7]........................................................................6
Figure 1.8 Low-temperature crystalline silicon (LTPS) thin film transistor liquid crystal
display by Toshiba Corporation [8]…………………………………………..……7
Figure 1.9 Flexible amorphous silicon solar by SANYO Electric Co. Ltd [9]…………..……7
Figure 1.10 Process flow chart for patterning of conventional photolithography……………..9
Figure 1.11 Results of different laser source etching line on ITO films…………………..…11
Figure 1.12 He-Cd laser writing lithography system [21]………………………………..….11
Figure 1.13 Surface profile and spiral pattern after laser patterning [21]………………….…12
Figure 1.14 SEM top view of laser ablation ITO films after CO2 snow [22]……………...…12
Figure 1.15 Results of optical micrograph with different laser source [23]…………….……13
Figure 1.16 ITO shape with different feeding speed [26]…………………………………….13
Figure 1.17 (a)-(c) Two-dimensional diffraction grating and (d)-(f) corresponding diffraction
transmission light mode [27]……………………………………………………...14
Figure 2.1 Laser in a variety of industries proportion [48]………………………………...…18
Figure 2.2 Light spectra from 193nm to 10600nm and the covered laser sources………….19
Figure 2.3 Compare with different cutting method for LCD glass [49]…………………...…20
Figure 2.4 Principle of Thermally Induced Cracking [50]……………………………………20
Figure 2.5 Laser intensity effect of the heating process [51]…...…………………………….22
XI
Figure 2.6 Relationship of reflectivity dependence on wavelength for different material
[52]……………………………………………………………………………..…22
Figure 2.7 Absorption versus wavelength of various materials [53]…………………………23
Figure 2.8 Long-pulsed laser matter interaction [56]………………………………………...25
Figure 2.9 Ultra-short pulsed laser-matter interaction [57]………………………………..…26
Figure 2.10 Traditional wet etching processes……………………………………………..…27
Figure 2.11 Schematic diagram of different type laser machining method [14]……………...29
Figure 2.12 Schematic diagram of hexagonal seamless scanning technology [60]………......29
Figure 2.13 Schematic diagram of detail of hexagonal seamless scanning technology.…...…30
Figure 2.14 Schematic diagram of bow tie scanning method [20].…………..………………31
Figure 2.15 Schematic diagram of different harmonic generator from Nd:YAG laser source
using nonlinear optical crystals [64]……………………………...………………32
Figure 2.16 Schematic diagram of laser pulse parameter (a) Pulsed mode and (b) Continuous
mode………………………………………………………………………………33
Figure 2.17 Theoretical variation of peak power versus pulse repetition frequency for different
average power……………………………………………………...……………..34
Figure 2.18 Theoretical variation of laser pulse energy versus pulse repetition frequency for
different average power…………………………………………….……………..34
Figure 2.19 The various mode diagram of rectangular symmetry [68]………………………35
Figure 2.20 Laser intensity distribution of various modes for laser beam [67].……………35
Figure 2.21 Theoretical depth of cutting processes versus cutting speed of moving stages….37
Figure 2.22 Schematic diagram illustrate of overlap laser beam spots…………………….....38
Figure 2.23 The geometrical relation between bite size and angle (a) 25% overlapping rate, (b)
50% overlapping rate, and (c) 75% overlapping rate…..........................................38
Figure 2.24 Schematic diagram of relationship with bite size and contact angle.………….39
Figure 2.25 Relationship between the residual rate and overlapping rate................................40
Figure 2.26 Schematic relationship of focus length and entrance laser beam diameter……41
Figure 2.27 Schematic diagram of relationship with depth of focus and focal length.…….42
Figure 3.1 Schematic illustrate of UV laser experimental apparatus in our laboratory………43
Figure 3.2 Schematic detail of UV laser processing system used in the micromachining.......43
Figure 3.3 Schematic diagram of laser control unit………………………………………...44
Figure 3.4 Laser output power versus pulse repetition frequency at various diode current..45
XII
Figure 3.5 Schematic diagram of definitions singlet lenses…………………………………..46
Figure 3.6 Two main types laser beam expander system. (a) Keplerian type beam expander
and (b) Galilean type beam expander…………………………………………….48
Figure 3.7 Results of laser beam spot diagram. (a) original- laser beam spot diagram and (b)
after- laser beam spot diagram……...…………………………………………….49
Figure 3.8 Schematic diagram of zoom expander…………………………………………….50
Figure 3.9 Two types laser beam misalignment deliver by beam expander. (a) Tilt
misalignment and (b) Dectnter misalignment….…………………………………50
Figure 3.10 Schematic illustrate of different types of laser scanning lens. (a) Simple
achromatic lens, (b) Flat-field scanning lens, (c) F-theta scanning lens, and (d)
Telecentric F-theta scanning lens [112]…………………………………………..51
Figure 3.11 Types of scanning system. (a) pre-objective scanning system and
(b)post-objective scanning system [114]………………………………………..53
Figure 3.12 Main control core of UV laser processing system……………………………….53
Figure 3.13 Schematic diagram of linear motor structure…………...……………………….55
Figure 3.14 Human mechanical interface of UV laser processing system………...…………56
Figure 3.15 Flowchart of the optical path simulation…………………………...……………57
Figure 3.16 Simulation structure of the Nd:YAG laser system……………………………….58
Figure 3.17 Results of different scanning angle using Tracepro software……...…………….60
Figure 3.18 Block diagram of PID control……………………………...……………………61
Figure 3.19 Second-order underdamped response specification..............................................62
Figure 3.20 Steps of the PID parameters adjustment……………………………...………….63
Figure 3.21 Principle of laser interferometer measurement for linear displacement error…...65
Figure 3.22 Schematic diagram of linear least square……………………………………...67
Figure 3.23 Flowchart of the least square curve fitting calculation…...……………………...67
Figure 3.24 Relationship between with error function and different order fitting function..68
Figure 3.25 Schematic of laser interferometer set-up for linear displacement error
measurement……………………………………………………………………68
Figure 3.26 X-axis linear displacement measurement with different interval………………69
Figure 3.27 Y-axis linear displacement error measurement with different interval…………70
Figure 3.28 Different degree curve fitting function of forward and reverse traveling. (a) Y-axis
10mm 15th curve fitting forward, (b) Y-axis 10mm 15th curve fitting reverse, (c)
XIII
Y-axis 1mm 5th curve fitting forward and (d) Y-axis 1mm 5th curve fitting
reverse…………………………………………………………………..………71
Figure 3.29 Flowchart of one-dimensional curve fitting compensation method......................73
Figure 3.30 X-axis linear displacement measurement after one-dimensional curve fitting with
different interval…………………………………………………………………..73
Figure 3.31 Y-axis linear displacement measurement after one-dimensional curve fitting with
different interval………………………………………………………………….73
Figure 3.32 Original 15th degree curve fitting with interval of 1mm…………………………74
Figure 3.33 Segmental fitting method for high order curves…………………………………75
Figure 3.34 X-axis linear displacement measurement after segmental curve fitting…………78
Figure 3.35 Positioning error values at different measurement points. (a) Y-axis error values
with different X-axis distance and (b) X-axis error values with different Y-axis
distance……………………………………………………………………………79
Figure 3.36 Two-dimensional positioning error of the moving table. (before compensation).81
Figure 3.37 The interface of the control system of inquiry error and compensation data……81
Figure 3.38 Two-dimensional positioning error of the moving table (after compensation)…82
Figure 4.1 Flowchart of the temperature distribution prediction procedure…………………85
Figure 4.2 SEM morphology of cross-section view of ITO films deposited on soda-lime glass
substrates……………………………………………………………….……….87
Figure 4.3 Optical microscope of laser ablation and untreated regions on ITO/PC substrates.
(a) laser power 0.07W, duration 1.05μsand (b) laser power 0.46W, duration
1.05μs……………………………………………………………………………87
Figure 4.4 Optical microscope of laser ablation and untreated regions on ITO/Glass substrates.
(a) laser power 0.07W, duration 1.05μsand (b) laser power 0.46W, duration
1.05μs……………………………………………………………………………88
Figure 4.5 Optical reflectance and transmittance versus wavelength for different type
substrates. (a) un-polished ITO films coated on polycarbonate substrate and (b)
Removal ITO films, only have polycarbonate substrate………………………….89
Figure 4.6 Temperature distribution during laser ablation on ITO/PC substrate. (a)
Temperature distribution of laser power of 0.07W and (b) 0.46W after laser
irradiation of 1.05μs……………………...……………………………………….90
Figure 4.7 Optical reflectance and transmittance versus wavelength for soda-lime glass
XIV
substrate………………………………………………………………………….91
Figure 4.8 Temperature distribution during laser ablation ITO/Glass substrate. (a) Temperature
distribution of laser power of 0.07W and (b) 0.46W after laser irradiation of
1.05μs…………………………………………………………………………......91
Figure 4.9 Schematic diagram of experimental apparatus.…………………………………93
Figure 4.10 Laser direct writing of ITO thin films with different feed rate. (a) Overlapping
rate less than 0%. (b) Overlapping rate: 0%. (c) Overlapping rate: 34%, and (d)
Overlapping rate: 75%............................................................................................94
Figure 4.11 SEM top-view of pattern ablated by THG Nd:YAG laser processing system in
ITO thin film. (a) line patterning with different parameters, (b) spiral patterning
after laser direct ablation, the dimension is 4×4mm2, and (c) circular patterning
with radius of 5mm, line width about 20μm.……………………………………..95
Figure 4.12 The photography shows a closed SEM top-view of a single line with different
feed rate. The laser energy is 1.3W and pulse repetition rate is5 kHz. (a) feed rate:
6 mm/s, (b) feed rate: 10 mm/s and (c) feed rate: 20 mm/s………………………95
Figure 4.13 The photography shows Heat Affect Zone (HAZ) with different repetition rate. (a)
repetition rate: 3 kHz, (b) repetition rate: 4 kHz and (c) repetition rate: 5 kHz…..96
Figure 4.14 The photography shows a closed SEM top-view of a collection of spiral corner
line patterning…………………………………………………………………….96
Figure 4.15 Relationship between the feeding speed and line-width.……………………...97
Figure 4.16 Relationship between the pulse repetition rate and line-width.………………..97
Figure 4.17 The RMS surface roughness of ITO films at (a) ITO/glass with substrate
thickness of 1.1mm, (b) ITO/PC with substrate thickness of 1.0mm.…………100
Figure 4.18 Measurement 2-Dimensional and 3-Dimensional laser intensity distribution
before and after the beam shaping. (a) Before laser beam shaping and (b) after
laser beam shaping………………………………………………………………101
Figure 4.19 Schematic diagram of laser beam transmittance…….…………………………101
Figure 4.20 Optical microscope photography of isolate line patterned at 355nm with different
pulse repetition on polycarbonate substrates (P=0.07W, v=40mm s-1). (a) Top view
of isolate line patterning, (b) 1kHz and 2kHz, (c) 3kHz and 4kHz and (d) 5kHz and
6kHz…………………………………………………………………………….103
Figure 4.21 Optical microscope photograph of isolate line patterned at 355 nm with different
XV
pulse repetition rate on polycarbonate substrates (P=0.46W, v=40mm s−1). (a) Top
view of isolate line patterning, (b) 1kHz and 2kHz, (c) 3kHz and 4kHz and (d)
5kHz and 6kHz, (e) 7kHz and 8kHz and (f) 9kHz and 10kHz…………………106
Figure 4.22 Optical microscope photograph of line patterned at 355nm with different pulse
repetition rate on glass substrates. (a) P=0.07W, v=20mm s−1, (b) P=0.46W,
v=20mm s−1.……………………………………………………………………..107
Figure 4.23 Circuit patterns ablated by UV laser processing system on ITO/PC substrate...108
Figure 4.24 SEM micrograph of complex electrode patterning on ITO/glass substrate…….109
Figure 4.25 Schematic diagram of the defined structure…………………………………….111
Figure 4.26 Optical high magnification images of the film surface after irradiated at different
electrode patterning……………………………………………………………112
Figure 4.27 Optical photography of un-removal films surface……………………………...113
Figure 4.28 Optical microscope images of the film surface at different pulse repetition
rate………………………………………………………………………………113
Figure 4.29 Optical images of the electrode patterning at laser power of 0.46W and different
pulse repetition rate……………………………………………………………114
Figure 4.30 Optical microscope of irradiation surface at laser power of 2.20W………….114
Figure 4.31 Electrical properties after laser beam irradiation with different laser parameter. (a)
Laser power of 0.07W, substrate: polycarbonate and (b) Laser power of 0.46W,
substrate: soda-lime glass…………....…………………………………………..115
Figure 4.32 Schematic diagram of different surface treatment path and surface morphology by
optical microscope on P-type silicon wafer with thickness 600μm: (a) vertical
spacing path, (b) Laser output power of 8.03W, pulse repetition frequency of
20kHz and pulse duration of 100μs with vertical path, (c) circular contour path (d)
Laser power of 8.03W, pulse repetition frequency of 20kHz and pulse duration of
100μs with circular contour path………………………………………………...119
Figure 4.33 Reflection curves of laser surface textured for two textured paths……………120
Figure 4.34 SEM photograph diagrams that surface morphologies of surface texture were used
by average laser power of 10.2W with different scanning setting time and duration.
(a) Scanner setting time: 100μs, pulse duration: 100μs; (b) Scanner setting time:
500μs, pulse duration: 500μs; (c) Scanner setting time: 800μs, pulse duration:
800μs……………………………………………………………………………121
XVI
Figure 4.35 SEM photograph diagrams that surface morphologies of surface texture were used
by average laser power of 8.03 W with different scanning setting time and duration.
(a) Scanner setting time: 100μs, pulse duration: 100μs; (b) Scanner setting time:
500μs, pulse duration: 500μs; (c) Scanner setting time: 800μs, pulse duration:
800μs……………………………………………………………………………121
Figure 4.36 SEM photograph diagrams that surface morphologies of surface texture were used
by average laser power of 6.11W with different scanning setting time and duration.
(a) Scanner setting time: 100μs, pulse duration: 100μs; (b) Scanner setting time:
500μs, pulse duration: 500μs; (c) Scanner setting time: 800μs, pulse duration:
800μs……………………………………………………………………………121
Figure 4.37 Relationship between pulse duration and roughness of different laser power…122
Figure 4.38 Relationship between the pulse repetition frequency and roughness of different
laser power……………………………...………...…………………………...123
Figure 4.39 Reflection curves of laser surface textured for wafers in different laser output
power……………………………………...…………………………………......123
Figure 4.40 Reflection curves for wafers with texture in the different pulse duration at output
power of 10.2W and pulse repetition frequency of 20 kHz……………………124
Figure 4.41 Orientation of single crystal wafer of silicon………………………………...126
Figure 4.42 Schematic diagram of wafer dicing saw processing……………………………126
Figure 4.43 Different methods of laser drilling……………………………………………128
Figure 4.44 SEM images of a SHG Nd:YAG laser drilling on the silicon wafer. (a) 5×5 matrix
and an obvious single hole on the surface of the silicon wafer front. (b) 5×5 matrix
and an obvious single hole on the surface of the silicon wafer backside………128
Figure 4.45 Average output power versus operation current………………………………129
Figure 4.46 SEM images of different DPSS laser average power for drilling on the silicon. (a)
6 kHz, 0.07W, (b) 6 kHz, 0.46W, (c) 6 kHz, 1.40W, (d) 6 kHz, 2.20W, (e) 6 kHz,
2.80W, (f) 6 kHz, 3.23W, (g) 6 kHz, 3.12W, (h) 6 kHz, 3.26W, (i) 6 kHz, 3.28W
and (j) 6 kHz, 3.33W.............................................................................................130
Figure 4.47 SEM images of different pulse repetition rates for drilling on the silicon wafer
(pulse duration: 1000ms). (a) 2kHz @ 2.20W, (b) 4kHz @2.20W, (c) 6kHz @
2.20W and (d) 8kHz @ 2.20W..............................................................................131
Figure 4.48 SEM images of different pulse repetition rates for drilling on the silicon wafer
XVII
(pulse duration: 3000ms). (a) 2kHz @ 2.2W, (b) 4kHz @2.2W, (c) 6kHz @ 2.2W
and (d) 8kHz @ 2.2W...........................................................................................131
Figure 4.49 Three dimensional images and profile of laser drilling on the silicon wafer. (a) 3D
reconstruction for laser drilling, and (b) Cross-section profile.............................133
Figure 4.50 Illustration of low temperature air materials processing used by a vortex tube in
the machine tool………………………………………………………………...134
Figure 4.51 The components of vortex tube in our laboratory. (a) Vortex generator; (b)
Separation tube; (c) Cold-end plane with orifice; (d) Control value……………134
Figure 4.52 Laser cutting without any assisted gas…………………………………………135
Figure 4.53 Laser cutting at the cooling-air 45 liter/min and the cutting speed 7.5 mm/s….135
Figure 4.54 SEM Cross-section view of laser cutting with cooling-air……………………136
Figure 4.55 SEM Cross-section view of mechanical punching with cooling-air…………137


[1] G. Gonçalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, and E. Fortunato, Influence of post-annealing temperature on the properties exhibited by ITO, IZO and GZO thin films, Thin solid films 515 (2007), pp. 8562-8566.
[2] G.J. Fang, D.J. Li, and B.L. Yao, Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering, Vacuum 68 (2002), pp. 363-372.
[3] D.Y. Song, P. Widenborg, W. Chin, and A.G. Aberle, Investigation of lateral parameter variations of Al-doped zinc oxide films prepared on glass substrates by rf magnetron sputtering, Solar Energy Materials and Solar Cells 73 (2002), pp. 1-20.
[4] H. Kim, J. S. Horwitz, S. B. Qadri and D. B. Chrisey, Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition, Thin solid films 420-421 (2002), pp.107-111.
[5] Tadatsugu Minami, Satoshi Ida and Toshihiro Miyata, High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation, Thin Solid Films 416 (2002), pp. 92-96.
[6] http://www.eink.com/press/releases/pr70.html
[7] http://www.physorg.com/news6180.html
[8] http://www3.toshiba.co.jp
[9] http://sanyo.com/r_and_d/jp/e/profile/field/energy_device_e.html
[10] http://www.precoinc.com/
[11] C.M. Dunsky, Laser material processing in microelectronics manufacturing: status and near-term opportunities, Proceeding of SPIE 5713 (2005), pp. 200-214.
[12] H. P. Ho, K. C. Lo, G. G. Siu, C. Surya, K. F. Li, and K. W. Cheah, Raman and photoluminescence spectroscopy of free-standing GaN separated from sapphire substrates by 532 nm Nd:YAG laser lift-off, Materials Chemistry and Physics 81 (2003), pp. 99-103.
[13] Ralph Delmdahl, Excimers push machining limits for resolution, precision and efficiency, Laser Focus World, March, 2003.
[14] S. Venkat and C. Dunsky, Laser patterning of ITO in flat panel display manufacturing, Proceeding of SPIE 6106 (2006), pp. 610602.1- 610602.7.
[15] O. Yavas and M. Takai, High-speed maskless laser patterning of indium tin oxide thin films Journal of Applied Physics 38 (1999), pp.2553-2560.
[16] O. Yavas and M. Takai, Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films, Journal of Applied Physics 85 (1999), pp.4207-4212.
[17] J.G. Lunney, R.R. O’Neill, and K. Schulmeister, Excimer laser etching of transparent conducting oxides, Applied Physics Letters 59 (1991), pp.647-649.
[18] J.G. Liu, C.H. Chen, J.S. Zheng, and J.Y. Huang, CO2 laser direct writing of silver lines on epoxy resin from solid film, Applied Surface Science 245 (2005), pp. 155-161.
[19] D. Farson, H.W. Choi, K.R. Kim and S.K. Hong, Direct write patterning of ITO film by femtosecond laser ablations, 6th International Symposium on Laser Precision Microfabrication, Williamsburg VA, U.S.A., April 4-8 2005, pp.583-588.
[20] H. J. Booth, Recent applications of pulsed lasers in advanced materials processing, Thin Solid Films 453-454 (2004), pp.450-457.
[21] Y.C. Chan, Y.L. Lam, Y. Zhou, F.L. Xu, C.Y. Liaw, W. Jiang and J. Ahn, Development and applications of a laser writing lithography system for maskless patterning, Optical Engineering 37 (1998), pp.2521-2530.
[22] O.A. Ghandour, D. Constantinide, and R. Sheets, Excimer ablation of ITO on flexible substrates for large format display application, Proceedings of SPIE 4637 (2002), pp.90-101.
[23] R. Tanaka, T. Takaoka, H. Mizukami, T. Arai and Y. Iwai, Laser etching of indium tin oxide thin films by ultra-short pulsed laser, Proceeding of SPIE 5063 (2003), pp.370-373.
[24] X.Y. Li, X.Y. Zeng, H.L. Li and X.J. Qi, Laser direct fabrication of silver conductors on glass boards, Thin Solid Films 483 (2005), pp.270-275.
[25] T. Honma, Y. Benino, T. Fujiwara and Takayuki Komatsu, Line patterning with large refractive index changes in the deep inside of glass by nanosecond pulsed YAG laser irradiation, Solid State Communications 135 (2005), pp.193-196.
[26] Yasuhiro OKAMOTO, Yoshiyuki UNO and Yasuyuki HIRAO, Micro machining of ITO film by LD pumped SHG YAG laser, Proceeding of SPIE 4830 (2003), pp.40-45.
[27] T. Baldacchini, A.C. Pons, J. Pons, C.N. LaFratta and J.T. Fourkas, Multiphoton laser direct writing of two-dimensional silver structures, Optical Society of America 13 (2005), pp.1275-1280.
[28] D.L. Shealy, Optical design of laser beam shaping systems, Proceeding of SPIE 4832 (2002), pp.344-358.
[29] S. Corbett, J. Strole, K. Johnston, J. Swenson and W. Lu, Laser direct exposure of photodefinable polymer masks using shaped-beam optics, IEEE Transactions of Electronics Packaging Manufacturing 28 (2005), pp.312-321.
[30] J. Cordingley, Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers, Optical Society of America 32 (1993), pp.2538-2542.
[31] D. Schaefer, J. Ihlemann, and F. Simon, "Diffractive beam shaping for partially coherent UV-laser beams," in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DTuD9.
[32] J.S. Liu and M.R. Taghizadeh, Iterative algorithm for the design of diffractive phase elements for laser beam shaping, Optics Letters 27 (2002), pp.1463-1465.
[33] Yoshie Uchiyama, Yasuhito Myoi, Hiroaki Tobuse, Masahiko Sakamoto, Yoshihide Nishida. Tatsuya Iwasa, Kouhei Murakami and Masaham Yoshida, Development of outer lead bonding apparatus with a focused YAG laser beam for high quality TCP bonding, Proceeding of IEEE (1994), pp.268-272.
[34] S. Gordon and M.T. Hillery, Development of a high-speed CNC cutting machine using linear motors, Journal of Materials Processing Technology 166 (2005), pp.321–329.
[35] http://www.lasermicronics.com/services/business-activities/
[36] D.L. King, B. R. Hansen and W.M. Lehrer, Development of a ulti-purpose, pulsed-laser system for solar cell processing applications, Proceeding of IEEE (1990), pp.278-283.
[37] E.C. Kinzel, X. Xu, B.R. Lewis, N.M. Laurendeau and R.P. Lucht, Direct writing of conventional thick film inks using MAPLE-DW process, Journal of Laser Micro/Nanoengineering 1 (2006), pp.74-78.
[38] Naoaki Ikeda, Takashi Akaba, Fumiaki Inoue, Shinji Takahashi and Osamu Noda, Diode-pumped solid-state ultraviolet laser micro processing system, Mitsubishi Heavy Industries, Ltd. Technical Review 40 (2003), pp. 1-5.
[39] http://www.synova.ch/english/synova.html
[40] P.M. Ferreira and C.R. Liu, An analytical quadratic model for the geometric error of a machine tool, Journal of Manufacturing Systems 5 (1986), pp.51-63.
[41] John M. Fines, Arvin Agah, Machine tool positioning error compensation using artificial neural networks, Engineering Applications of Artificial Intelligence 21 (2008), pp.1013-1026.
[42] E.H.K. Fung, S.M. Yang, An approach to on-machine motion error measurement of a linear slide, Measurement 29 (2001), pp.51-62.
[43] H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, F. Delbressine, Geometric error measurement and compensation of machines - An update, CIRP Annals - Manufacturing Technology 57 (2008), pp.660-675.
[44] K.K. Tan, S.N. Huang, T.H. Lee, Geometrical error compensation and control of an XY table using neural networks, Control Engineering Practice 14 (2006), pp.59-69.
[45] H.F.F. Castro, M. Burdekin, Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer, International Journal of Machine Tools & Manufacture 43 (2003), pp.947-954.
[46] K.K. Tan, S. Huang, Geometrical error compensation of machines with significant random errors, ISA Transactions 44 (2005), pp.43-53.
[47] Daisuke Kono, Atsushi Matsubara, Iwao Yamaji, Tomoya Fujita, High-precision machining by measurement and compensation of motion error, International Journal of Machine Tools & Manufacture 48 (2008), pp.1103-1110.
[48] S.J Chang, C.H Liu and L.W. Ji, Semiconductor laser, Science Development 349 (2002), pp.14-21. (in Chinese)
[49] http://www.schott.com/english/
[50] http://www.laser-zentrum-hannover.de/en/index.php
[51] H. Hügel, B.G. Teubner, Strahlwerkzeug Laser, Stuttgart, 1992.
[52] Naiaki Ikeda, Takashi Inoue, Fumiaki Inoue, Shinji Takahashi, and Osamu Noda, Diode-Pumped Solid-State Ultraviolet Laser Micro Processing System, Mitsubishi Heavy industries Ltd. Technical Review 40 (2003), pp.1-5.
[53] Z. Illyefalvi-Vitéz, Laser processing for microelectronics packaging applications, Microelectronics Reliability 41 (2001), pp.563-570.
[54] Eugene Hecht, Optics, Addison Wesley, San Francisco, 2002, pp.115-131
[55] C.K. Ho, H.C. Man, T.M. Yue, C.W. Yuen, Laser etching of polymer masked leadframes, Applied Surface Science 109-110 (1997), pp.236–241.
[56] http://www.cmxr.com/Industrial/Handbook/Chapter3.htm
[57] http://www.cmxr.com/Industrial/Handbook/Chapter5.htm
[58] S.H Lu, FPD mask of technology - specific large-scale movements - to achieve the cost reduction of large TFT-LCD, Metal Industries Research & Development Centre, 2008. (in Chinese)
[59] O.A. Ghandour, D. Constantinide, R. Sheets, Excimer ablation of ITO on flexible substrates for large format display applications, Proceeding of SPIE 4637 (2002), pp.90-101.
[60] Marc Klosner, Kanti Jain, Massively parallel, large-area maskless lithography, Applied Physics Letter 84 (2004), pp.2880-2882.
[61] C.T. Chen, B.C. Wu, A.D. Jiang, G.M. You, A new ultraviolet SHG crystal beta-BaB2O4, Scientia Sinica, Series B 28 (1985), pp.235-243.
[62] F.C. Zumsteg, J.D. Bierlein, T.E. Gier, KxRb1−xTiOPO4: A new nonlinear optical material, Journal of Applied Physics 47 (1976), pp.4980-4985.
[63] Y.C. Wu, T. Sasaki, S. Nakai, A. Yokotani, H.G. Tang, C.T. Chen, CsB3O5: A new nonlinear optical crystal, Applied Physics Letter 62 (1993), pp.2614-2615.
[64] Liming He, Yoshiharu Namba, Yuji Narita, Wavelength optimization for machining metals with the harmonic generations of a short pulsed Nd:YAG laser, Precision Engineering 24 (2000), pp.245-250.
[65] M.F. Chen, Y.P. Chen, W.T. Hsiao, Z.P. Gu, Laser direct write patterning technique of indium tin oxide film, Thin solid Films 515 (2007), pp.8515-8518.
[66] W.M. Steen and J.N. Kamalu, Laser Cutting, Laser Material Processing, 1989.
[67] J.C. Ion. Laser Processing of Engineering Materials: Principles Procedure and Industrial Application, Elsevier Butterworth-Heinemann, Burlington, MA, 2005:104-105
[68] http://perg.phys.ksu.edu/vqm/laserweb/Ch-4/C4s3t1p2.htm
[69] B.H. Zhou and S.M. Mahdavian, Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser, Journal of Materials Processing Technology 146 (2004), pp.188-192.
[70] M. Von Allmen, Laser-Beam Interactions with Materials, Springer-Verlag, Berlin, 1995.
[71] F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New-York NY, 1985.
[72] D.R. Dance, C.L. Skinner, K.C. Young, J.R. Beckett, C.J. Kotre, Additional factors for the estimation of mean glandular breast does using the UK mammography dosimetry protocol, Phys. Med. Biol. 45 (2000), pp.3225-3240.
[73] H. Becker, U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures, Sensors and Actuators A: Physical 83 (2000), pp.130-135.
[74] X. Zhang, W. Hendro, M. Fujii, T. Tomimura, and N. Imaishi, Measurements of the thermal conductivity and thermal diffusivity of polymer melts with the short-hot-wire method, International journal of thermophysics 23 (2002), pp.1077-1090.
[75] L. Jakevičius, J. Butkus, A. Vladišauskas, Simulation of the pitch-catch of ultrasound waves at oblique incidence to the plane glass layer, ULTRAGARSAS, 55 (2005), pp.17-22.
[76] P.B. Narottam, R.H. Doremus, Handbook of glass properties, Academic Press, New York NY, 1986.
[77] S. Bäumer, Handbook of plastic optics, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.
[78] H.C. Lee, O. Park, The evolution of the structural, electrical and optical properties in indium-tin-oxide thin film on glass substrate by DC reactive magnetron sputtering, Vacuum 80 (2006), pp.880-887.
[79] H.R. Fallah, M. Ghaseni, A. Hassanzadeh, H. Steki, The effect of deposition rate on electrical, optical and structural properties of tin-doped indium oxide (ITO) films on glass at low substrate temperature, Physica B 373 (2006), pp.274-279.
[80] R. Teghil, D. Ferro, A. Galasso, A. Giardini, V. Marotta, G.P. Parisi, A. Santagata, P. Villani, Femtosecond pulsed laser deposition of nanostructured ITO thin films, Materials Science and Engineering: C 27 (2007), pp.1034-1037.
[81] S.S. Kim, S.Y. Choi, C.G. Park, H.W. Jin, Transparent conductive ITO thin films through the sol-gel process using metal salts, Thin Solid Films 347 (1999), pp.155-160.
[82] M.A. Green, Photovoltaics: technology overview, Energy Policy 28 (2000), pp.989-998.
[83] M.A. Green, Third generation photovoltaics: solar cells for 2020 and beyond, Physica E 14 (2002), pp.65-70.
[84] L.A. Dobrzański and A. Drygała, Laser processing of multicrystalline silicon for texturization of solar cells, Journal of Materials Processing Technology, 191 (2007), pp.228-231.
[85] A. Wang, J. Zhao, and M. A. Green, 24% efficient silicon solar cells, Applied Physics Letter 57 (1990), pp.602-604.
[86] J. Zhao, A. Wang, P. Altermatt, and M. A. Green, Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss, Applied Physics Letter 66 (1995), pp.3636-3638.
[87] M.A. Green, J. Zhao, A. Wang, and S.R. Wenham, Very high efficiency silicon solar cells-science and technology, IEEE Transactions on Electron Devices 46 (1999), pp.1940-1947.
[88] A. Rohatgi, S. Narasimha, A.U. Ebong and P. Doshi , Understanding and implementation of rapid thermal technologies for high-efficiency silicon solar cells. IEEE Transactions on Electron Devices 46 (1999), pp.1970–1977.
[89] S.W. Park and J. Kim, Application of acid texturing to multi-crystalline silicon wafers, Journal of Korean Physics Society 43 (2003) pp.423-426.
[90] M.J. Stocks, A.J. Carr, and A.W. Blakers, Texturing of polycrystalline silicon, Solar Energy Materials and Solar Cell 40 (1996), pp.33-42.
[91] D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, Texturing industrial multicrystalline silicon solar cells, Solar Energy 76 (2004), pp.277-283.
[92] S. Winderbaum, O.Reinhold, and F. Yun, Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells, Solar Energy Materials and Solar Cells 46 (1999), pp.239-248.
[93] T.J. McKee, How lasers mark, Electro Technology 7 (1996), pp.27-30.
[94] H. Presting, J. Konle, H. Kibbel, and F. Banhart, Growth studies of Ge-islands for enhanced performance of thin film solar cells, Physica E 14 (2002), pp.249-254.
[95] Y. Wang and D.S. Xiong, The effect of laser surface texturing on frictional performance of face seal, Journal of Materials Processing Technology 197 (2008), pp.96-100.
[96] M.J. Jackson and G.M. Robinson, Micromachining electrical grade steel using pulsed Nd-YAG lasers, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007), pp.451-454.
[97] B. Tan and K. Venkatakrishnan, A femtosecond laser-induced periodical surface structure on crystalline silicon, Journal of Micromechanics and Microengineering 16 (2006), pp.1080-1085.
[98] L.A. Dorzański, A.Drygała, P. Panek, M. Lipiński and P. Zięba, Application of laser in multicrystalline silicon surface processing, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007), pp.179-182.
[99] S. Mwenifumbo, M. Li, J. Chen, A. Reye and W. Soboyejo, Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces, Journal of Material Science: Materials in Medicine 18 (2007), pp.9-23.
[100] P. Campbell, S. R. Wwnham, and M. A. Green, Light trapping and reflection control with tilted pyramids and grooves, Proceeding of 20th IEEE Photovoltaic Specialists Conference 1 (1998), pp.713-716.
[101] Paetzel, R., 2002. www.coherent.com/Downloads
[102] A.F.M. Arif, A.Z. Shuja and B.S. Yilbas, Gas-assisted laser single-pulse heating: study of thermal stresses. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 215 (2001), pp.291-306.
[103] K.T. Voisey and T.W. Clyne, Laser drilling of cooling holes through plasma sprayed thermal barrier coatings, Surface and Coatings Technology 176 (2004), pp.296-306.
[104] B.S. Yilbas, S.Z. Shuja and M.O. Budair, Nano-second laser pulse heating and gas assisting jet considerations, International Journal of Machine Tools & Manufacture 40 (2000), pp.1023-1038.
[105] W.O’ Neill and J.T. Gabzdyl, New developments in laser-assisted oxygen cutting, Optics and Lasers in Engineering 34 (2000), pp.355-367.
[106] D.K.Y. Low, L. Li and A.G. Corfe, The influence of assist gas on the mechanism of material ejection and removal during laser percussion drilling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 214 (2000), pp.521-527.
[107] S.Z. Shuja and B.S. Yilbas, The influence of gas jet velocity in laser heating - a moving workpiece case. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 214 (2000), pp.1059-1078.
[108] W.F. Wu and B.S Chiou, Deposition of indium tin oxide films on polycarbonate substrates by radio-frequency magnetron sputtering, Thin solid Films 298 (1997), pp.221-227.
[109] N. Al-Dahoudi, H. Bisht, C. Gobbert, T. Krajewski and M.A. Aegerter, Transparent conducting, anti-static and anti-static-anti-glare coatings on plastic substrates, Thin Solid films 392 (2001), pp.299-304.
[110] http://spie.org/x16144.xml?ArticleID=x16144
[111] F. M. Chuang, M.W. Chang and S.G. Shiue ,Solution areas of three component afocal zoom system, Optik 101 (1995), pp.10-16.
[112] http://www.cvimellesgriot.com
[113] Copley controls corp., XenusTM Digital servomplifier for brushless or brush motors, 2005
[114] ZEBASE Optical design database user’s guide version 4.0, 1999.
[115] M.F. Chen and Y.P. Chen, Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines, International Journal of Machine Tools & Manufacture 47 (2007), pp.1114-1124.
[116] N.S. Nise, Control systems engineering, Redwood City, California, 1995.
[117] W.Y Hsiao, W.T Hsiao and M.F. Chen, Positioning error compensation of linear motor motion control system, Mechatronics Magazine 67 (2004). (in Chinese)
[118] C.R. Chuang, Development and Testing of Ultra-Precision Aerostatic Guideway System, MS -Thesis, Department of Mechatronics Engineering, National Changhua University of Education, Changhua, Taiwan, R.O.C., 2009.
[119] M.F. Chen, Y.P. Chen, W.T. Hsiao, Two-Dimensional compensation Method for Positioning Error in Conventional X-Y tables, Journal of Advanced Mechanical Design, Systems, and Manufacturing 1 (2007), pp.595-604.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top