跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張光君
研究生(外文):Kuang-Chun Chang
論文名稱:改良式最小均方誤差-平行式干擾消除之多重輸入輸出迭代偵測器
論文名稱(外文):An improved MMSE-PIC method for iterative MIMO detection
指導教授:陳喬恩
指導教授(外文):Chiao-En Chen
口試委員:李彥文胡家彰劉宗憲陳喬恩
口試委員(外文):Yin-Man LeeChia-Chang HuTsung-Hsien LiuChiao-En Chen
口試日期:2014-12-26
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:60
中文關鍵詞:多重輸入多重輸出交織映射迭代解調與解碼迭代式後驗機率演算法最小均方誤差-平行式干擾消除
外文關鍵詞:multiple-input-multiple-output (MIMO)iterative demodulation and decoding (IDD)maximum a-posteriori probabilities (MAP)mean-squared-error-parallel-interference-cancellation (MMSE-PIC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
在多重輸入多重輸出(multiple-input-multiple-output, MIMO) 系統中,使用高效
率錯誤更正碼經由位元交織(interleaver)再映射(mapper)以及接收端的迭代解調與解
碼(iterative demodulation and decoding, IDD) 架構,能夠使系統達到接近MIMO通道極
限的錯誤率表現,因此成為近年來非常重要的通訊技術。在此架構下,接收端之偵測器
可以接收來自解碼器回傳的外部資訊以產生系統所需的軟性(soft) 輸出。一般而言,迭
代式後驗機率演算法(maximum a-posteriori probability, MAP) 為典型的偵測器,其擁
有極佳的系統效能,但是相對地也有極高的運算複雜度。本篇論文中,我們結合迭代式
後驗機率演算法和最小均方誤差-平行式干擾消除(minimum mean squared error parallel
interfernce cancellation, MMSE-PIC) 的技術來改善多重輸入多重輸出的軟性偵測器。從
模擬結果可以得知,我們所提出的演算法在迭代解調解碼系統中能夠得到比最小均方誤
差-平行式干擾消除偵測器更低的錯誤率表現。

Iterative detection and decoding (IDD) for multiple-input-multiple-output communication
systems has drawn great research interests lately as it can achieve near-capacity
performance of the MIMO channel. While the maximum a-posteriori probability (MAP)
detector can achieve the optimal performance, the required complexity is often prohibitive
for practical implementation. In order to reduce the computational complexity in IDD,
the minimum-mean-squared-error parallel interference cancellation (MMSE-PIC) detector
has been proposed. The MMSE-PIC detector has the advantage of much lower computational
complexity compared to the MAP detector but the error rate performance is
much worse.
In this thesis, we propose an improved MMSE-PIC detector by combining the MAP
and MMSE-PIC detection. Simulation results show that the proposed detection scheme
can achieve better error rate performance comparing to the MMSE-PIC detection while
the computational complexity is still lower than that of the MAP detection.

1 序論1
1.1 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 章節概要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 捲積碼系統4
2.1 捲積碼介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 搭配和積演算法加上因子圖之捲積碼編碼與解碼. . . . . . . . . . . . . . 6
2.2.1 和積演算法與因子圖介紹. . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 捲積碼編碼器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 捲積碼解碼器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 MIMO多天線系統20
3.1 MIMO多天線系統介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 MIMO系統架構模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 MIMO偵測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 迭代式後驗機率偵測器. . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 最小均方誤差-平行式干擾消除偵測器. . . . . . . . . . . . . . . 27
4 本論文所提出之改良式MIMO迭代偵測器30
4.1 使用的MIMO迭代偵測器系統架構模型. . . . . . . . . . . . . . . . . . 31
4.2 改良式MIMO迭代偵測器. . . . . . . . . . . . . . . . . . . . . . . . . . 33
5 電腦模擬與效能分析40
5.1 迭代式後驗機率與最小均方誤差-平行式干擾消除偵測器之模擬結果與錯
誤率分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 提出之兩種改良式MIMO迭代偵測器之模擬結果與錯誤率分析. . . . . . 43
5.3 各種MIMO偵測器之模擬結果與錯誤率分析. . . . . . . . . . . . . . . . 45
5.3.1 各種MIMO偵測器之模擬結果與錯誤率分析. . . . . . . . . . . . 47
5.4 複雜度分析比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.1 迭代式後驗機率偵測器與最小均方誤差偵測器之複雜度分析比較. 50
5.4.2 改良式MIMO迭代偵測器之複雜度分析比較. . . . . . . . . . . . 52
5.4.3 各種MIMO偵測器在還沒有迭代時之複雜度分析比較. . . . . . . 54
5.4.4 各種MIMO偵測器已經迭代兩次後之複雜度分析比較. . . . . . . 55
6 結論56
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
[1] H. Wymeersch, Iterative Receiver Design, Cambridge University press, 2007.
[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of codes for min-
imising symbol errer rate,” IEEE Trans. Information Theory, vol. 20, no. 2, pp. 284 -
287, Mar. 1974.
[3] S. Baro, J. Hangenauer, and M. Witzke, “Iterative detection of MIMO transmission
using a list-sequential (LISS) detector,” in Proc. IEEE Int. Conf. Communications,
May 2003, vol. 4, pp. 2653 - 2657.
[4] P. Robertson, E. Villeburn, and P. Hoher, “A comparison of optimal and sub-optimal
MAP decoding algorithms operating in the log domain,” in Proc. IEEE Int. Conf.
Communications, Dec. 1995, vol. 2, pp. 1009 - 1013.
[5] X. Lou, Q. Zhou, and Y. Chen, “Low complexity MIMO MMSE iterative detec-tion algorithm,” in proc. Wireless and Optical Communication Conference (WOCC), Chongqing, May 2013, pp. 95-100.
[6] X.Wang, and H. V. Poor, “Iterative (turbo) soft interfrence cancellation and decoding
for coded CDMA,” IEEE Trans. Communications, vol. 47, no. 7, pp.1046-1061, Jul.1999.
[7] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on multiple-antenna channel,” IEEE Trans. Communications, vol. 51, no. 3, pp.389-399, Mar. 2003.
[8] T. J. Hsieh and W. H. Sheen, “A lattice-reduction aided max-log list demapper for
coded MIMO receivers,” IEEE Trans. Vehicular Technology, vol. 63, no. 2, pp. 664 -
673, Aug. 2013.
[9] D. N. Liu and M. P. Fitz, “Low complexity affine MMSE detector for iterative
detection-decoding MIMO OFDM systems,” IEEE Trans. Communications, vol.
56, no. 1, pp. 150 - 158, Jan. 2008.
[10] C. Studer, “Iterative MIMO decoding: algorithms and VLSI implementation aspects,”
Ph.D. dissertation, ETH Z¨urich, Switzerland, Series in Microelectronics, vol.
202, Hartung-Gorre Verlag Konstanz, 2009.
[11] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-optimal maximum
a posteriori algorithms suitable for turbo decoding,” European Transactions on
Telecommunications (ETT), vol. 8, no. 2, pp. 119 - 125, Mar. 1997.
[12] S. M. Alamouti, “A simple transmit deversity technique for wireless communications,”
IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451
- 1458, Oct. 1998.
[13] B. Farhang-Boroujeny, H. Zhu, and S. Shi, “Markov chain Monte Carlo algorithms
for CDMA and MIMO communication systems,” IEEE Trans. on Signal Processing,
vol. 54, no. 5, pp. 1896 - 1909, May. 2006.
[14] S. Haykin, M. Sellathurai, Y. de Jong, and T. Willink, “Turbo-MIMO for wireless
communications,” IEEE Communications Magazine, vol. 42, no. 10, pp. 48 - 53, Oct.
2004.
[15] R. Visoz and A. O. Berthet, “Iterative decoding and channel estimation for spacetime
BICM over MIMO block fading multipath AWGN channel,” IEEE. Trans. on
Communications, vol. 51, pp. 8 1358 - 1367, Aug. 2003.
[16] M. Witzke, S. Baro, F. Schreckenbach, and J. Hagenauer, “Iterative detection of
MIMO signals with linear detectors,” in Proc. 36th Asilomar Conference On Signals,
Systems And Computers, Pacific Grove, CA, USA, Nov. 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top