跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:韓士強
研究生(外文):Shyh-Chyang Harn
論文名稱:利用低熱預算來形成淺接面之研究
論文名稱(外文):A Study of Shallow Junction Formation by Using Low Thermal Budget
指導教授:莊敏宏
指導教授(外文):Miin-Horng Juang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:98
中文關鍵詞:淺接面低熱預算離子植入非矽化接面鈷矽化接面爐管回火快速熱退火
外文關鍵詞:Shallow JunctionLow Thermal BudgetIon ImplantationNon-Silicided JunctionCobalt Silicided JunctionFA ( Furnace Annealing )RTA ( Rapid Thermal Annealing )
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了滿足深次微米技術的需求,互補式金氧半場效電晶體元件的縮小化必須包含著一些製程上的調整,其中最具挑戰的部分即是淺接面的研製。低能量的離子植入,搭配著低熱預算的回火製程,可以研製出更淺的接面。為了採用低熱預算的方案,我們運用低溫長時間的爐管回火及快速熱退火裝置來活化植入的雜質並且讓雜質無顯著的擴散現象發生。
此外,本文利用各種不同的低熱預算方案來執行淺接面的研製。第一種方案是在低溫下的爐管回火,第二種方案是在低溫下的爐管回火後隨即執行快速熱退火方式,第三種方案是先執行快速熱退火後再進行低溫下的爐管回火。第四種方案是在低溫下的爐管回火後隨即執行高溫下的爐管回火方式。在本文中,一併探討由不同技術所研製之接面,其雜質活化情形和漏電特性。

The scaling of CMOS devices to satisfy deep submicrometer technology requirements involves several process adjustments . One of the main challenges is the formation of shallow junction . Low-energy ion implantation , in tandem with low-thermal budget annealing processes , allows us to form shallower junctions . To adopt a low thermal budget scheme , we employed long-time low-temperature furnace annealing and rapid thermal annealing(RTA)as an approach of activating the implanted dopants without significant diffusion and eliminating the implanted-induced defects .
Moreover , various low thermal budget schemes have been performed to form shallow junctions . The first scheme is the low temperature furnace annealing . The second scheme is the low temperature furnace annealing followed by RTA . The third scheme is the RTA followed by low temperature furnace annealing . The fourth scheme is the low temperature furnace annealing followed by high temperature furnace annealing . In this thesis , the dopant activation and the electrical characteristics of junctions have also been investigated .

Abstract(in Chinese)……………………………………………………………………....Ⅰ
Abstract(in English)……………………………………………………………………….Ⅱ
Acknowledgements…………………………………………………………………………...Ⅲ
Contents………………………………………………………………………………………Ⅳ
Table Lists…………………………………………………………………………………….Ⅵ
Figure Captions……………………………………………………………………………….Ⅶ
Chapter 1. Introduction………………………………………………………………………....1
1.1 Motivation………………………………………………………………………………….1
1.2 Thesis Outline……………………………………………………………………………...4
Chapter 2. Experimental Procedures………………………………………………………..........5
2.1 Formation of Non-Silicided Shallow p+/n Junctions…………………………………….........5
2.2 Formation of Cobalt Silicided Shallow p+/n Junctions……………………………………......6
2.3 Formation of Non-Silicided Shallow n+/p Junctions……………………………………….....7
2.4 Formation of Cobalt Silicided Shallow n+/p Junctions…………………………………….......8
Chapter 3. Results and Discussions of p+/n Junctions……………………………………...........10
3.1 Conventional High Temperature Furnace Annealing(HT)……………………………….....10
3.2 Low Temperature Furnace Annealing Scheme(LT)…………………………………….......11
3.3 Low Temperature Furnace Annealing followed by RTA Scheme(LT+RTA)………….........13
3.4 Low Temperature Furnace Annealing followed by HT Furnace Annealing Scheme……...............15
3.5 RTA followed by Low Temperature Furnace Annealing Scheme(RTA+LT)………….........15
Chapter 4. Results and Discussions of n+/p Junctions…………………………………….............17
4.1 Conventional High Temperature Furnace Annealing(HT)……………………………….......17
4.2 Low Temperature Furnace Annealing Scheme(LT)……………………………………........18
4.3 RTA followed by Low Temperature Furnace Annealing Scheme(RTA+LT)…………..........19
4.4 Low Temperature Furnace Annealing followed by HT Furnace Annealing Scheme……................20
Chapter 5. Conclusions……………………………………………………………………...........21
5.1 Conclusions of p+/n Junctions……………………………………………………………....21
5.2 Conclusions of n+/p Junctions……………………………………………………………....22
References……………………………………………………………………………………....23
Vita

[1] Hiroshi Iwai , " CMOS Technology----Year 2010 and Beyond , " IEEE Journal of Solid-State Circuits , Vol. 34 , N0.3 , p.357--366 , 1999 .
[2] A. Hori , H. Nakaoka , H. Umimoto , K. Yamashita , M. Takase , N. Shimizu , B. Mizuno , and S. Odanaka , " A 0.05mm CMOS with Ultra Shallow Source/Drain Junctions Fabricated by 5KeV Ion Implantation and Rapid Thermal Annealing , "
IEDM Tech. , Digest , p. 485-- 488 , 1994 .
[3] D. F. Downey , C. M. Osburn , and S. D. Marcus , " Ultrashallow Junction Formation by Ion Implant and RTA , " Solid State Technology , p.71--82 , December 1997 .
[4] Y. Nakahara , K. Takeuchi , T. Tatsumi , Y. Ochiai , S. Manako , S. Samukawa , and A. Furukawa , " Ultra-shallow in-situ-doped raised source/drain structure for sub-tenth micron CMOS , " Symposium on VLSI Technology Digest , p. 174--175 , 1996 .
[5] The National Technology Roadmap for Semiconductors:Semiconductor Industry Association , San Jose , California , 1994 .
[6] Q. F. Wang and C. M. Osburn , " Ultra-Shallow Junction Formation Using Silicide as a Diffusion Source and Low Thermal Budget , " IEEE Trans. Electron Devices , Vol. 39 , p. 2486--2496 , 1992 .
[7] K. K. Ng and W. T. Lynch , " The impact of intrinsic series resistance on MOSFET scaling , " IEEE Trans. Electron Devices , Vol. 34 , p. 503 , 1987 .
[8] A. K. Sinha , " Refractory metal silicides for VLSI applications , " J. Vac. Sci. Technol. , vol. 19 , p. 778 , 1981 .
[9] T. Shibata , K. Hieda , M. Konaka , R. L. M. Dang , and H. Lizuka , " An optimally designed process for submicron MOSFETs , " IEDM Tech. Dig. , p. 647 , 1981 .
[10] C. K. Lau , Y. C. See , D. B. Scott , J. M. Bridges , S. M. Peran , and R. D. Davies , " Titanium disilicide self-aligned source/drain + gate technology , " IEDM Tech. Dig. , p.714 , 1982 .
[11] M. E. Alperin , T. C. Holloway , R. A. Haken , C. D. Cosmeyer , R. V. Karnaugh , and W. D. Parmantie , " Development of the self-aligned titanium silicide process for VLSI applications , " IEEE Trans. Electron Devices , vol. 32 , p. 141 , 1985 .
[12] R. Liu , D. S. Williams , and W. T. Lynch , " A study of the leakage mechanisms of silicided n+/p junctions , " J. Appl. Phys. 63 (6), 15 p. 1990--1999 , 1988 .
[13] C. H. Peng , J. S. Maa , and S. T. Hsu , " Edge leakage of cobalt silicided shallow junctions , " Thin Solid Films 308-309
p. 575--579 , 1997 .
[14] Takashi Yoshitomi , M. Saito , T. Ohguro , M. Ono , H. S. Momose , E. Morifuji , T. Morimoto , Y. Katsumata , and H. Iwai , " Single-gate 0.15 and 0.12 mm CMOS with Co salicide technology , " Solid-State Electronics 43 , p. 543--546 , 1999 .
[15] M. H. Juang , S. C. Han , and M. C. Hu , " Effects of Ni silicidation on the shallow p+/n junctions by BF2+ implantation into thin polycrystalline-Si films on Si substrates " Jpn. J. Appl. Phys. Vol. 37 , p. 5515--5518 , 1998 .
[16] V. Probst , H. Schaber , A. Mitwalsky , H. Kabia and Hoffmann:J. Appl. Phys. Vol. 70 , p. 5327 , 1991 .
[17] J. B. Laskey , J. S. Nakos , O. J. Chan and P. J. Geiss:IEEE Trans. Electron Devices vol. 38 , p. 262 , 1991 .
[18] K. Maex , R. F. Keersmaecker , G. Ghosh , L. Delaey and V. Probst:J. Appl. Phys. Vol. 66 , p. 5327 , 1989 .
[19] M. Tabasky , E. S. Bulat , B. M. Ditchek , M. A. Sullivan , and S. C. Shatas , " Direct Silicidation of Co on Si by Rapid Thermal Annealing , " IEEE. Trans. Electron Devices , vol. 34 , p. 548--553 , 1987 .
[20] Q. F. Wang , C. M. Osburn , P. L. Smith , C. A. Canovai , and G. E. Mcguire , " Thermal Stability of Thin Sub-micrometer Lines of CoSi2 , " J. Electrochem. Soc. , vol. 140 , p. 200--205 , 1993 .
[21] Q. F. Wang et al. , " Improved stability of thin cobalt disilicide films using BF2+ implantation , " Appl. Phys. Lett. , vol. 61 ,
p. 653--656 , 1991 .
[22] Stanley Wolf , " Silicon Processing For The VLSI ERA " , Vol. 2 , p. 150--152 , 1990 .
[23] S. N. Hong , " 0.2-mm p+/n junction characteristics dependent on implantation and annealing processes , " IEEE. Electron Device Letters , Vol. 20 , No. 2 , 1999 .
[24] J. H. Park , J. Y. Lee , K. H. Lee , and H. S. Hwang , " Ultrashallow p+/n junction formation by 0.5-1KeV ion implantation " Jpn. J. Appl. Phys. Vol. 37 , Pt. 2 , No. 11B , p. 1376--1378 , 1998 .
[25] S.M. SZE " VLSI Technology " , 2-nd edition , p. 357--358 , 1988 .

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top