跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 02:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱翔
研究生(外文):Chen, Yu-Hsiang
論文名稱:鈀/鍺/鈦/鉑與砷化銦鎵的歐姆介面之最佳化及材料分析
論文名稱(外文):Optimization and analysis of Pd/Ge/Ti/Pt ohmic contact on n-InxGa1-xAs (x=0, 0.2 and 0.53)
指導教授:洪銘輝郭瑞年
指導教授(外文):Hong, Ming-HweiKwo, Ray-Nien
口試委員:黃倉秀郭治群徐嘉鴻
口試日期:2011-7-7
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:82
中文關鍵詞:歐姆介面砷化銦鎵
外文關鍵詞:Ohmic contactInGaAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
砷化銦鎵半導體的高遷移率對於高速互補式金屬氧化物元建中是一極有潛力之通道材料,而在互補式金屬氧化物元件的製成當中,如何有效降低源 極以及汲極的接觸電阻是非常關鍵的一個議題《尤其是在小尺寸的元件當中《 接觸電阻對於元件效能的影響更為重大〈有鑑於此《鈀/鍺/鈦/鉑在砷化銦鎵半導體上的歐姆介面在這篇論文中《達成了對於接觸電組之最佳化以及對於歐姆 介面形成做了完整的材料分析〈
經由分子束磊晶技術《不同比例的砷化銦
InxGa1-xAs semiconductors are now potential candidates for high-speed complementary metal oxide semiconductor (CMOS) devices due to their high electron mobility. One of the key issues of fabricating high performance CMOS is to lower the contact resistance, which is the dominant component in the highly scaled devices. In this work, Pd/Ge/Ti/Pt metal system had been fabricated on n-InxGa1-xAs (x=0, 0.2, 0.53) layers for achieving low contact resistivity with planar metal-semiconductor interface.
A solid-source GaAs-based III-V molecular beam epitaxial (MBE) was used to grow GaAs, In0.2Ga0.8As and In0.53Ga0.47As epilayers. The samples were rapid thermal annealed (RTA) at various temperatures from 300°C to 400°C for 10 to 90 seconds after the deposition of Pd/Ge/Ti/Pt metals. Transmission line method (TLM) was used to extract the specific contact resistivity (ρc) and sheet resistance (Rs).
With the optimized Ge thickness and RTA condition, the lowest ρc attained on n-GaAs and n-In0.2Ga0.8As are 1.2×10-6 ohm-cm2 and 5.4×10-7 ohm-cm2 respectively. For n-In0.53Ga0.47As, ρc could even reach as low as 1×10-7 ohm-cm2. Moreover, X-ray diffraction (XRD), transmission electron microscope (TEM) and energy-dispersive X- ray spectroscopy (EDS) have also been used to analyze the mechanism of forming ohmic contacts on n-InxGa1-xAs. The results have demonstrated that the Pd/Ge/Ti/Pt metal system could to be readily applied to MOSFETs for the ohmic contact on the re- grown source/drain or ion-implanted source/drain with appropriate activation temperature.
中 文 摘 要 ................................................................................................... I Abstract ....................................................................................................II 致 謝 ........................................................................................................ III Table of Contents .................................................................................. IV Table Captions......................................................................................VII Figure Captions .................................................................................. VIII
Chapter 1 Introduction...........................................................................1 1.1 Research background ...................................................................................1 1.2 Motivation......................................................................................................3
Chapter 2 Instrumentation and Theories .............................................6
2.1 Molecular beam epitaxy ...............................................................................6
2.1.1 Multi-Chamber MBE system.............................................................6 2.1.2 Reflection High Energy Electron Diffraction21 ................................7 2.1.3 Residual Gas Analyzer .....................................................................11
2.2 Electrical analysis of Metal-Semiconductor contact................................13
2.2.1 Metal-Semiconductor contact..........................................................13 2.2.2 Contact resistance .............................................................................15 2.2.3 Transmission line model (TLM) ......................................................19
2.3 Etching principles of acid solutions...........................................................24
2.3.1 Native Oxide Removal by Using Hydrochloric Acid .....................24
2.3.2 Etching principles of GaAs with sulfuric acid/hydrogen peroxide/water solution .............................................................................26
2.4 X-ray diffraction .........................................................................................26
2.5 Transmission Electron Microscope (TEM) ..............................................27
2.6 Energy-dispersive X-ray spectroscopy (EDS) ..........................................27
2.7 Hall measurement ....................................................................................... 28

Chapter 3 Experimental Procedure.....................................................30 3.1 Highly Doped III-V Layer Growth Process in MBE System..................30 3.2 Ohmic Contact Metal Deposition on TLM pattern regions....................32 3.3 Measurement of Specific Contact Resistivity ...........................................34 3.4 Micro-structure Analyses...........................................................................34
3.4.1 X-ray Diffraction (XRD) .................................................................34
3.4.2 High Resolution Transmission Electron Microscope (HRTEM).35 Chapter 4 Results and Discussion........................................................36
4.1 The Optimization and Investigation of the Pd/Ge/Ti/Pt Metals on n- GaAs Layer.........................................................................................................36
4.1.1 Optimization of Contact Resistivity with Various Thickness Ratio of Pd/Ge on n-GaAs ...................................................................................36
4.1.1.1 Pd(30nm)/ Ge(15nm)/ Ti(30nm)/ Pt(30nm) deposited on n-GaAs..37
4.1.1.2 Pd(30nm)/ Ge(30nm)/ Ti(30nm)/ Pt(30nm) deposited on n-GaAs..38
4.1.1.3 Pd(30nm)/ Ge(60nm)/ Ti(30nm)/ Pt(30nm) deposited on n-GaAs..41
4.1.1.4 Pd(30nm)/ Ge(30nm) deposited on n-GaAs ....................................43
4.1.1.5 Comparison of specific contact resistivity with different Pd/Ge ratio and RTA conditions on n-GaAs...................................................................45
4.1.2 Phase Identificaiton of the Pd/Ge/Ti/Pt on n-GaAs with different RTA conditions...........................................................................................47
4.2 The Optimization and Investigation of the Pd/Ge/Ti/Pt Metals on n- In0.2Ga0.8As Layer ..............................................................................................50
4.2.1 Optimization of Contact Resistivity with Various Thickness Ratio of Pd/Ge on n-In0.2Ga0.8As.........................................................................50
4.2.1.1 Pd(30nm)/ Ge(15nm)/ Ti(30nm)/ Pt(30nm) deposited on n- In0.2Ga0.8As ..................................................................................................50
4.2.1.2 Pd(30nm)/ Ge(30nm)/ Ti(30nm)/ Pt(30nm) deposited on n- In0.2Ga0.8As ..................................................................................................52
4.2.1.3 Pd(30nm)/ Ge(60nm)/ Ti(30nm)/ Pt(30nm) deposited on n- In0.2Ga0.8As ..................................................................................................54
4.2.1.4 Pd(30nm)/ Ge(30nm) deposited on n-In0.2Ga0.8As ..........................56
...................................................................................................................... 56
4.2.1.5 Comparison of specific contact resistivity with different Pd/Ge ratio and RTA conditions on n-In0.2Ga0.8As.........................................................57
4.2.2 Strucural Investigation of the Relation between Contact Resistivity and Annealing Conditions on n-In0.2Ga0.8As ........................60
4.2.2.1 Phase Identificaiton of the Pd/Ge/Ti/Pt on n-In0.2Ga0.8As with different RTA conditions .............................................................................60
4.2.2.2 Cross-section Structural Investigation of Pd/Ge/Ti/Pt on In0.2Ga0.8As with Various RTA Conditions Using TEM .................................................63
4.2.3 The Migration of Germanium Atoms on In0.2Ga0.8As during Rapid Thermal Annealing.........................................................................66
4.3 Comparison with other results on n-GaAs with short time annealing ...68
4.4 The Optimization and Investigation of the Pd/Ge/Ti/Pt Metals on n- In0.53Ga0.47As Layer............................................................................................70
4.4.1 Optimization of Contact Resistivity with Various Thickness Ratio of Pd/Ge on n-In0.53Ga0.47As ...................................................................... 70
4.4.1.1 Pd(60nm)/ Ge(60nm)/ Ti(30nm)/ Pt(30nm) deposited on n- In0.53Ga0.47As ................................................................................................ 70
4.4.1.2 Comparison of specific contact resistivity with different Pd/Ge ratio and RTA conditions on n-In0.53Ga0.47As ......................................................71
4.4.2 Phase Identificaiton of the Pd/Ge/Ti/Pt on n-In0.53Ga0.47As with different RTA conditions...........................................................................73
4.5 Comparison with other results on n-In0.53Ga0.47As with short time annealing ............................................................................................................. 76
Chapter 5 Conclusion............................................................................78 Reference ................................................................................................. 80
1. Schroder DK. Semiconductor material and device characterization. 2006.
2. Nittono T, Ito H, Nakajima O, Ishibashi T, Jpn J Appl Phys 1.27:1718-1722 (1988)
3. Braslau N, Gunn JB, Staples JL, Solid State Electron.10:381-383 (1967)
4. Procop M, Sandow B, Phys Status Solidi A.95:K211-K215 (1986)
5. Lakhani AA, Potter RC, Beyea DM, Semicond Sci Tech.3:605-607 (1988)
6. Alietti M, Canali C, Castaldini A, Cavallini A, Cetronio A, Chiossi C, D'Auria S, Del Papa C, Lanzieri C, Nava F, Nuclear Instruments and Methods in Physics Research Section A.362:344-348 (1995)
7. Kim T, Chung DDL, J Vac Sci Technol B.4:762-768 (1986)
8. Auvray P, Guivarch A, Lharidon H, Mercier JP, Henoc P, Thin Solid
Films.127:39-68 (1985)
9. Gyulai J, Mayer JW, Rodrigue.V, Yu AYC, Gopen HJ, J Appl Phys.42:3578-&
(1971)
10. Zee LY, Munir ZA, J Mater Sci.10:1929-1937 (1975)
11. Katz W, Smith G, Aina O, Baliga BJ, Rose K, Appl Surf Sci.9:122-130 (1981)
12. Jung T, Nebauer E, Phys Status Solidi A.77:K203-K206 (1983)
13. Langer DW, Ezis A, Rai AK, J Vac Sci Technol B.5:1030-1032 (1987)
14. Braslau N, Journal of Vacuum Science and Technology.19:803 (1981)
15. Sinha AKS, T.E.; Levinstein, H.J.; , Electron Devices. (1975)
16. E. D. Marshall CSW, C. S. Pai, D. M. Scott, and S. S. Lau, Materials Research Society, Pittsburgh 161 (1985)
17. Wang LC, Lau SS, Hsieh EK, Velebir JR, Appl Phys Lett.54:2677-2679 (1989)
18. Mead CA, J Electrochem Soc.115:C240-& (1968)
19. Ding J, Washburn J, Sands T, Keramidas VG, Appl Phys Lett.49:818-820 (1986) 80

20. M. A. Herman HS. Molecular beam epitaxy- fundamentals and current status. Springer-Verlag Berlin Heidelberg 1989.
21. Braun W, Moller H, Zhang YH, J Cryst Growth.202:50-55 (1999)
22. Ye PD, Yang B, Ng KK, Bude J, Wilk GD, Halder S, Hwang JCM, Appl Phys
Lett.86:- (2005)
23. Monch W, Rep Prog Phys.53:221 (1990)
24. Waldrop J, Appl Phys Lett. (1984)
25. Barnes PA, Cho, A. Y., , Appl Phys Lett. (1978)
26. Marshall E, Chen W, Wu C, Lau S, Kuech T, Appl Phys Lett.47:298 (1985)
27. Fischetti MV, Laux SE, Ieee T Electron Dev.38:650-660 (1991)
28. Marshall ED, Zhang B, Wang LC, Jiao PF, Chen WX, Sawada T, Lau SS, Kavanagh KL, Kuech TF, J Appl Phys.62:942-947 (1987)
29. Yu AYC, Solid State Electron.13:239-247 (1970)
30. Padovani FA, Stratton R, Solid State Electron.9:695-707 (1966)
31. Murrmann H, Widmann D, Ieee T Electron Dev.Ed16:1022-1024 (1969)
32. Berger HH, Solid State Electron.15:145-158 (1972)
33. Woelk E, KR?貸TLE H, Beneking H, Ieee T Electron Dev.33:19-22 (1986)
34. Song Z, Shogen S, Kawasaki M, Suemune I, Appl Surf Sci.82-3:250-256 (1994)
35. Alperovich VL, Tereshchenko OE, Rudaya NS, Sheglov DV, Latyshev AV, Terekhov AS, Appl Surf Sci.235:249-259 (2004)
36. Liu H, Tsai S, Hsu J, Shih H, Materials Chemistry and Physics.61:117-123 (1999) 37. Barycka I, Zubel I, J Mater Sci.22:1299-1304 (1987)
38. Lida S, J Electrochem Soc.118:768-& (1971)
39. Kim I, Materials Letters. 57, 4033 (2003)
40. Hao PH, Wang LC, Deng F, Lau SS, Cheng JY, J Appl Phys.79:4211-4215 (1996) 41. Shen T, Gao G, Morkoc H, Journal of Vacuum Science & Technology B:
Microelectronics and Nanometer Structures.10:2113 (1992)
42. Jones K, Cole M, Han W, Eckart D, Hilton K, Crouch M, Hughes B, J Appl Phys.82:1723 (1997)
43. Kwak JS, Lee JL, Baik HK, Ieee Electr Device L.19:481-483 (1998)
44. Lim JW, Mun JK, Kwak MH, Lee JJ, Solid State Electron.43:1893-1900 (1999)
45. Lin H, Senanayake S, Cheng K, Hong M, Kwo J, Yang B, Mannaerts J, Ieee T Electron Dev.50(2003)
46. Mach?錐!!!@#269; P, Sajdl P, Machovič V, Journal of Materials Science: Materials .... (2007)
47. Chen W, Cowles J, Haddad G, Journal of Vacuum .... (1992)
48. Crook A, Lind E, Griffith Z, Rodwell... M, Applied Physics .... (2007)
49. Singisetti U, Wistey MA, Zimmerman JD, Thibeault BJ, Rodwell MJW, Gossard AC, Bank SR, Appl Phys Lett.93:183502 (2008)
50. Baraskar AK, Wistey MA, Jain V, Singisetti U, Burek G, Thibeault BJ, Lee YJ, Gossard AC, Rodwell MJW, J Vac Sci Technol B.27:2036-2039 (2009)
51. Fischetti MV, Laux SE, IEEE T Electron Dev.39:749-750 (1992)
52. Tsuchiya H, Maenaka A, Mori T, Azuma Y, IEEE Electr Device L.31:365-367
(2010)
53. Baraskar AB, A., Wistey MA, Jain V, Lobisser E, Singisetti U, Burek G, Lee YJ,
Thibeault B, Gossard A, Rodwell M, J Vac Sci Technol B.28:C5i7-C5i9 (2010)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊