跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昱廷
研究生(外文):Yu-Tin Lin
論文名稱:利用多層稀疏低秩迴歸探測基因與基因的交互作用
論文名稱(外文):Detection of Gene×Gene Interactions by Multistage Sparse Low-Rank Regression
指導教授:陳素雲陳素雲引用關係
指導教授(外文):Su-Yun Huang
口試委員:陳宏陳鵬文洪弘蕭朱杏
口試日期:2012-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:38
中文關鍵詞:漸近常態交互作用低秩估計過度參數化稀疏性
外文關鍵詞:Asymptotic normalityInteractionLow-rank approximationOver-parameterizedScreen and cleanSparsity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Researchers in biological sciences nowadays often encounter the curse of
high-dimensionality. A serious consequence is that many traditional statistical
methods fail to fit for high-dimensional models. The problem becomes even
more severe when the interest is in interactions between variables, as there will
be p(p−1)/2 interaction terms with p variables. To improve the performance,
in this thesis we model the interaction effects utilizing its matrix form with
a low-rank structure. A low-rank model for symmetric matrix then greatly
reduces the number of parameters required, and hence, increases the stability
and quality of statistical analysis. Individual hypothesis tests are then carried
out on each interaction effect to wash out insignificant interactions. A low-
rank matrix, however, is not necessarily sparse. We thus impose a sparsity
constraint in the second stage to select interactions.
Due to the extremely high-dimensionality for gene×gene interactions, a
single-stage method is not adequately flexible enough for variable selection.
Our sparse low-rank approach for interactions is a modification of a multi-
stage screen-and-clean procedure byWasserman and Roeder (2009) andWu et
al. (2010). We replace their mere sparsity constraint by combining a low-rank
structure and a sparsity constraint to the interactions. In simulation studies,
we show that the proposed low-rank approximation-aided screen and clean
procedure often can achieve higher power and higher selection-consistency
probability.

Contents
Acknowledgements i
Abstract (in Chinese) ii
Abstract (in English) iii
Contests iv
Figures v
Tables vi
1 Introduction and model specification 1
2 Estimation procedure for sparse low-rank interaction model 4
2.1 Estimation for low-rank model with 2-norm penalty . . . . . . . . . . 5
2.1.1 Rank-2r model implementation . . . . . . . . . . . . . . . . . 5
2.1.2 Rank-1 model implementation . . . . . . . . . . . . . . . . . . 7
2.2 Estimation for sparse model with 1-norm penalty . . . . . . . . . . . 8
2.3 Why a sparse low-rank model, why not a direct sparse model? . . . . 8
3 Low-rank screening by hypothesis testing 10
3.1 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Asymptotic testing procedure . . . . . . . . . . . . . . . . . . . . . . 11
4 Multistage variable selection for detecting
gene×gene interactions 13
4.1 Review of screen-and-clean method . . . . . . . . . . . . . . . . . . . 13
4.2 Low-rank aided screen-and-clean method . . . . . . . . . . . . . . . . 14
5 Simulation studies 16
5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Conclusion discussion 33
Appendix 33
References 37

[1] B‥uhlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data:
Methods, Theory and Applications. Springer Series in Statistics.
[2] Cand`es, E. J., Li, X., Ma, Y. andWright, J. (2011). Robust principal component
analysis? Journal of the ACM, 58(3), Article 11.
[3] Cook, R. D. and Ni, L. (2005). Sufficient dimension reduction via inverse regression:
a minimum discrepancy approach. Journal of American Statistical
Association, 100(470), 410-428.
[4] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood
and its oracle properties. Journal of American Statistical Association, 96(456),
1348-1360.
[5] Henderson, H. V. and Searle, S. R. (1979). Vec and vech operators for matrices,
with some uses in Jacobians and multivariate statistics. Canadian Journal of
Statistics, 7(1), 65-81.
[6] Kolda, T.G. and Bader, B.W. (2009). Tensor decompositions and applications.
SIAM Review, 51(3), 455-500.
[7] Liu, H., Roeder, K. and Wasserman, L. (2010). Stability approach to
regularization selection (StARS) for high dimensional graphical models.
arXiv:1006.3316v1
Screen and Clean software http://wpicr.wpic.pitt.edu/WPICCompGen/
[8] Magnus, J. R. and Neudecker, H. (1979). The commutation matrix: some properties
and applications. Annals of Statistics, 7(2), 381-394.
[9] Shapiro, A. (1986). Asymptotic theory of overparameterized structural models.
Journal of American Statistical Association, 81(393), 142-149.
[10] Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of
micro-arrays applied to the ionizing radiation response. Proceedings of the Na-
tional Academy of Sciences, 98(9), 5116-5121.
[11] Wasserman, L. and Roeder, K. (2009). High-dimensional variable selection.
Annals of Statistics, 37(5A), 2178-2201.
[12] Wu, J., Devlin, B., Ringquist, S., Trucco, M. and Roeder, K. (2010). Screen
and clean: a tool for identifying interactions in genome-wide association studies.
Genetic Epidemiology, 34(3), 275-285.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top