|
[1] B‥uhlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Series in Statistics. [2] Cand`es, E. J., Li, X., Ma, Y. andWright, J. (2011). Robust principal component analysis? Journal of the ACM, 58(3), Article 11. [3] Cook, R. D. and Ni, L. (2005). Sufficient dimension reduction via inverse regression: a minimum discrepancy approach. Journal of American Statistical Association, 100(470), 410-428. [4] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of American Statistical Association, 96(456), 1348-1360. [5] Henderson, H. V. and Searle, S. R. (1979). Vec and vech operators for matrices, with some uses in Jacobians and multivariate statistics. Canadian Journal of Statistics, 7(1), 65-81. [6] Kolda, T.G. and Bader, B.W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455-500. [7] Liu, H., Roeder, K. and Wasserman, L. (2010). Stability approach to regularization selection (StARS) for high dimensional graphical models. arXiv:1006.3316v1 Screen and Clean software http://wpicr.wpic.pitt.edu/WPICCompGen/ [8] Magnus, J. R. and Neudecker, H. (1979). The commutation matrix: some properties and applications. Annals of Statistics, 7(2), 381-394. [9] Shapiro, A. (1986). Asymptotic theory of overparameterized structural models. Journal of American Statistical Association, 81(393), 142-149. [10] Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of micro-arrays applied to the ionizing radiation response. Proceedings of the Na- tional Academy of Sciences, 98(9), 5116-5121. [11] Wasserman, L. and Roeder, K. (2009). High-dimensional variable selection. Annals of Statistics, 37(5A), 2178-2201. [12] Wu, J., Devlin, B., Ringquist, S., Trucco, M. and Roeder, K. (2010). Screen and clean: a tool for identifying interactions in genome-wide association studies. Genetic Epidemiology, 34(3), 275-285.
|