|
Reference [1]M. A. Abbasi, Z. H. Ibupoto, M. Hussain, O. Nur, and M. Willander, The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence, Nanoscale Res. Lett. 8, 320 (2013). [2]O. Lupan, T. Pauporte, and B. Viana, Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes, Adv. Mater. 22, 3298 (2010). [3]Y. P. Hsieh, H. Y. Chen, M. Z. Lin, S. C. Shiu, M. Hofmann, M. Y. Chern, et al., Electroluminescence from ZnO/Si-Nanotips Light-Emitting Diodes, Nano Lett. 9, 1839 (2009). [4]J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, et al., Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions, Appl. Phys. Lett. 95, 131117 (2009). [5]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, et al., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nat. Mater. 4, 42 (2005). [6]J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, UV electroluminescence emission from ZnO light‐emitting diodes grown by high‐temperature radiofrequency sputtering, Adv. Mater. 18, 2720 (2006). [7]H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls, Adv. Funct. Mater. 20, 561 (2010). [8]M. D. McCluskey and S. J. Jokela, Defects in ZnO, J. Appl. Phys. 106, 071101, (2009). [9]A. Janotti and C. G. Van de Walle, Native point defects in ZnO, Phys. Rev. B 76, 165202 (2007). [10]H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, Z. Z. Zhang, et al., Ultralow-Threshold Laser Realized in Zinc Oxide, Adv. Mater. 21, 1613 (2009). [11]C. Cheng, E. Sie, B. Liu, C. Huan, T. Sum, H. Sun, et al., Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles, Appl. Phys. Lett. 96, 071107 (2010). [12]J. F. Lu, C. X. Xu, J. Dai, J. T. Li, Y. Y. Wang, Y. Lin, et al., Plasmon-enhanced whispering gallery mode lasing from hexagonal Al/ZnO microcavity, ACS Photonics 2, 73 (2015). [13]S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, et al., Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon, J. Appl. Phys. 112, 013112 (2012). [14]Y. J. Lu, J. Kim, H. Y. Chen, C. H. Wu, N. Dabidian, C. E. Sanders, et al., Plasmonic nanolaser using epitaxially grown silver film, Science 337, 450 (2012). [15]A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev. 27, 241 (1998). [16]D. Schaadt, B. Feng, and E. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles, Appl. Phys. Lett. 86, 063106 (2005). [17]C. W. Lai, J. An, and H. C. Ong, Surface-plasmon-mediated emission from metal-capped ZnO thin films, Appl. Phys. Lett. 86, 251105 (2005). [18]S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, et al., Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes, Appl. Phys. Lett. 99, 181116 (2011). [19]W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, et al., Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration, Nanoscale 5, 8634 (2013). [20]X. H. Li, Y. Zhang, and X. J. Ren, Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films, Opt. Express 17, 8735 (2009). [21]T. Singh, D. Pandya, and R. Singh, Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles, Thin Solid Films 520, 4646 (2012). [22]Y. H. Lee, D. H. Kim, K. H. Yoo, and T. W. Kim, Efficiency enhancement of organic light-emitting devices due to the localized surface plasmonic resonant effect of Au nanoparticles embedded in ZnO nanoparticles, Appl. Phys. Lett. 105, 183303 (2014). [23]L. Jian Ming, L. Hsia Yu, C. Chung Liang, and C. Yang Fang, Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles, Nanotechnology 17, 4391 (2006). [24]S. S. Chen, X. H. Pan, H. P. He, W. Chen, W. Dai, C. Chen, et al., 60-fold photoluminescence enhancement in Pt nanoparticle-coated ZnO films: role of surface plasmon coupling and conversion of non-radiative recombination, Opt. Lett. 40, 2782 (2015). [25]D. Y. Lei and H. C. Ong, Enhanced forward emission from ZnO via surface plasmons, Appl. Phys. Lett. 91, 211107 (2007). [26]J. F. Lu, Z. L. Shi, Y. Y. Wang, Y. Lin, Q. X. Zhu, Z. S. Tian, et al., Plasmon-enhanced electrically light-emitting from ZnO Nanorod Arrays/p-GaN heterostructure devices, Sci Rep 6, 25645 (2016). [27]C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, et al., Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles, Appl. Phys. Lett. 96, 071107 (2010). [28]B. Niu, L. Wu, W. Tang, X. Zhang, and Q. Meng, Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance, CrystEngComm 13, 3678 (2011). [29]Y. Lin, J. Li, C. Xu, X. Fan, and B. Wang, Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower, Appl. Phys. Lett. 105, 142107 (2014). [30]Z. X. Chen, B. Y. Lai, J. M. Zhang, G. P. Wang, and S. Chu, Hybrid material based on plasmonic nanodisks decorated ZnO and its application on nanoscale lasers, Nanotechnology 25, 295203 (2014). [31]A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance, Appl. Phys. Lett. 90, 231106 (2007). [32]W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, et al., Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires, Crystengcomm 13, 2336 (2011). [33]C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles, Appl. Phys. Express 5, 62003 (2012). [34]T. Nakamura, S. Sonoda, and S. Adachi, Plasmonic control of ZnO random lasing characteristics, Laser Phys. Lett. 11, 016004 (2014). [35]S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, et al., Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes, Appl. Phys. Lett. 99, 181116 (2011). [36]C. L. C. H. Y. Lin, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen Enhancement of band gap emission stimulated by defect loss, Opt. Express 14, 2372 (2006). [37]V. Subramanian, E. E. Wolf, and P. V. Kamat, Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration, J. Phys. Chem. B 107, 7479 (2003). [38]Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays, Appl. Phys. Lett. 98, 033103 (2011). [39]M. K. Lee, T. G. Kim, W. Kim, and Y. M. Sung, Surface plasmon resonance (SPR) electron and energy transfer in noble metal−zinc oxide composite nanocrystals, J. Phys. Chem. C 112, 10079 (2008). [40]H. M. Cheng, Low-dimensional ZnO nanostructures: fabrication, optical properties and applications for dye-sensitied solar cells, dissertation, National Chiao Tung University, (2011). [41]D. C. Reynolds, D. C. Look, and B. Jogai, Optically pumped ultraviolet lasing from ZnO, Solid State Commun. 99, 873 (1996). [42]R. M. Hewlett and M. A. McLachlan, Surface structure modification of ZnO and the impact on electronic properties, Adv. Mater. 28, 3893 (2016). [43]T. F. Dai, W. C. Hsu, and H. C. Hsu, Improvement of photoluminescence and lasing properties in ZnO submicron spheres by elimination of surface-trapped state, Opt. Express 22, 27169 (2014). [44]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, et al., Bound exciton and donor-acceptor pair recombinations in ZnO, Phys. Status Solidi B-Basic Solid State Phys. 241, 231 (2004). [45]A. B. Djurišić and Y. H. Leung, Optical properties of ZnO nanostructures, Small 2, 944 (2006). [46]M. Liu, A. H. Kitai, and P. Mascher, Point-defects and luminescence-centers in zinc-oxide and zinc-oxide doped with manganese, J. Lumines. 54, 35 (1992). [47]L. Bixia, F. Zhuxi, and J. Yunbo, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett. 79, 943 (2001). [48]Mark Fox, Optical properties of solids, 2nd, OXFORD,(2010). [49]Y. Lin, X. Q. Liu, T. Wang, C. Chen, H. Wu, L. Liao, et al., Shape-dependent localized surface plasmon enhanced UV-emission from ZnO grown by atomic layer deposition, Nanotechnology 24, 125705 (2013). [50]K. A. Willets and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58, 267 (2007). [51]吳民耀, 劉威志, 表面電漿子理論與模擬, 物理雙月刊:二十八卷二期, 486 (2006). [52]E. Hutter and J. H. Fendler, Exploitation of localized surface plasmon resonance, Adv. Mater. 16, 1685 (2004). [53]D. A. Neamen, Semiconductor physics and devices:basic principles, McGraw-Hill, (2011). [54]S. O. Kasap, Optoelectronics and photonics:principles and practices, 2nd, PEARSON, (2013). [55]郭浩中, 賴芳儀, 郭守義, LED原理與應用, 五南圖書出版公司, ( 2012). [56]H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method, Appl. Phys. Lett. 102, 013109 (2013). [57]E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, Self-assembled 3D photonic crystals from ZnO colloidal spheres, Mater. Chem. Phys. 80, 257 (2003). [58]H. M. Cheng, H. C. Hsu, S. L. Chen, W. T. Wu, C. C. Kao, L. J. Lin, et al., Efficient UV photoluminescence from monodispersed secondary ZnO colloidal spheres synthesized by sol–gel method, J. Cryst. Growth 277, 192 (2005). [59]M. Eriksson, Time Resolved Micro Photoluminescence of InGaN/GaN Quantum Dots, Master thesis, Royal Institute of Technology (KTH), (2011). [60]R. Viter, Z. Balevicius, A. Abou Chaaya, I. Baleviciute, S. Tumenas, L. Mikoliunaite, et al., The influence of localized plasmons on the optical properties of Au/ZnO nanostructures, J. Mater. Chem. C 3, 6815 (2015). [61]Y. Zeng, Y. Zhao, and Y. J. Jiang, Investigation of the photoluminescence properties of Au/ZnO/sapphire and ZnO/Au/sapphire films by experimental study and electromagnetic simulation, J. Alloys Compd. 625, 175 (2015). [62]K. Saravanan, B. K. Panigrahi, R. Krishnan, and K. G. M. Nair, Surface plasmon enhanced photoluminescence and Raman scattering of ultra thin ZnO-Au hybrid nanoparticles, J. Appl. Phys. 113, 033512 (2013). [63]K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy, Appl. Phys. Lett. 87, 071102 (2005). [64]W. Z. Liu, H. Y. Xu, S. Y. Yan, C. Zhang, L. L. Wang, C. L. Wang, et al., Effect of SiO2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs, ACS Appl. Mater. Interfaces 8, 1653 (2016) [65]K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Surface-plasmon-enhanced light emitters based on InGaN quantum wells, Nat. Mater. 3, 601 (2004) [66]W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, et al., Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer, Appl. Phys. Lett. 101, 142101 (2012). [67]Z. Shi, X. Xia, W. Yin, S. Zhang, H. Wang, J. Wang, et al., Dominant ultraviolet electroluminescence from p-ZnO:As/n-SiC(6H) heterojunction light-emitting diodes, Appl. Phys. Lett. 100, 101112 (2012). [68]X. M. Mo, H. Long, H. N. Wang, S. Z. Li, Z. Chen, J. W. Wan, et al., Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO2 electron blocking layer, Appl. Phys. Lett. 105, 063505 (2014). [69]H. Wang, Y. Zhao, C. Wu, X. Dong, B. L. Zhang, G. G. Wu, et al., Ultraviolet electroluminescence from n-ZnO/NiO/p-GaN light-emitting diode fabricated by MOCVD, J. Lumines. 158, 6 (2015).
|