跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張鈞
研究生(外文):Chun Chang
論文名稱:揚聲器音圈定位優化
論文名稱(外文):Reduction of the Total Harmonic Distortion of a Moving-Coil Loudspeaker by Initially Repositioning its Voice Coil
指導教授:黃錦煌黃錦煌引用關係
指導教授(外文):Jin-Huang Huang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電聲碩士學位學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:109
中文關鍵詞:總諧波失真參數樣線差分法動圈式揚聲器非線性效應
外文關鍵詞:parameter-spline-difference methodmoving-coil loudspeakertotal harmonic distortionNonlinear effectsound pressure level
相關次數:
  • 被引用被引用:4
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:3
揚聲器的非線性行為一直以來是電聲領域相當重要的課題,揚聲器在大振幅情況下的非線性行為包含了磁力耦合因子、剛性、電感隨音圈位移的非線性行為,而這也是造成失真的主要因子。以往開發揚聲器時只能透過錯誤嘗試法(Trial & Error Method),不僅開發時間冗長且研發成本過高。因此本文利用有限元素模擬揚聲器之主要的失真參數,包含磁力耦合因子Bl(x) 、電感Le(x)及振膜剛性Km(x),並利用KLIPPEL 量測系統驗證Bl(x)、Le(x)及Km(x)模擬的準確性,並嘗試搭配參數樣線法來求解揚聲器頻率響應特性及失真,建立一套揚聲器特性預測及診斷流程。
揚聲器非線性參數的設計應盡量設計為對稱的形式,能有效的降低諧波失真,但實際上由於揚聲器幾何的不對稱,造成揚聲器要設計出對稱剛性非線性特性較困難。因此本文提出透過調整音圈初始位置來優化不對稱的剛性非線性特性所引發之諧波失真。預期結果與實際成品量測之結果亦相當吻合,其總諧波失真降低約10%且同時也優化互調失真,顯示本文所建構的方法確實能作為一個有效改善揚聲器失真的方法。
The nonlinear effect of a moving-coil loudspeaker, originating from its magnetic coupling factor and the system’s stiffness, presents a significant impact on the sound quality. For improving the sound quality, this article proposes an approach to reduce the total harmonic distortion (THD) by adjusting the initial position of its voice-coil. First, a mathematical model involving the nonlinearities of force factor, mechanical stiffness, and inductance of voice coil is constructed and then solved using a novel algorithm called the parameter spline difference method (PSD). In the course of pursuing reduction of the corresponding THD of a typical moving-coil loudspeaker, the model was used to analyze the nonlinearity of the THD, revealing itself as a nonlinear function of force factor, the system’s stiffness and inductance of voice coil. For various initial positions of the voice-coil, the coupled nonlinear differential equations were solved using the PSD to yield corresponding sound pressure level and THD. To our satisfaction, the loudspeaker driver with its voice-coil optimally tuned for the initial position turns out to have a THD reduction of 10%, which is also consistent with our experimental observations.
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 文獻回顧 3
1-4 文章架構 6
第二章 非線性數學模式 8
2-1 揚聲器的非線性分析模型 9
2-2 RUNGE-KUTTA METHOD 13
2-3 參數樣線差分法(PARAMETER SPLINE DIFFERENCE METHOD) 15
2-4 數值方法之比較 18
2-4.1 線性的情況 19
2-4.2 非線性的情況 22
第三章 揚聲器固有的非線性特性評估 25
3-1 揚聲器磁力耦合因子(FORCE FACTOR)非線性行為評估 26
3-1.1 磁力耦合因子的模擬與驗證 27
3-2揚聲器電感(INDUCTANCE)非線性行為評估 33
3-2.1 電感非線性特性的模擬與驗證 35
3-3 揚聲器剛性(STIFFNESS)非線性行為評估 41
3-3.1 剛性非線性特性之模擬與驗證 43
第四章 功率定義及失真優化探討 47
4-1 揚聲器溫升分析模型及功率級探討 47
4-1.1 揚聲器溫升線性模型 48
4-1.2 揚聲器非線性熱模型 53
4-1.3 功率壓縮 (POWER COMPRESSION) 59
4-1.4 功率的預測 60
4-2 非線性行為的產物 66
4-2.1 直流偏移(DC DISPLACEMENT) 66
4-2.2 頻率響應特性動態壓縮(SENSITIVITY COMPRESSION) 70
4-3失真的優化 72
4-3.1 音圈初始位置與失真的關係 72
4-3.2實際成品驗證 82
第五章 結論與未來展望 88
5-1 結論 88
5-2 未來研究方向 89
參考文獻 93
[1]A.N. Thiele, “Loudspeakers in Vented Boxes”, J. Audio Eng. Soc., Vol.19, p.p.382-392, 1971.
[2]R.H. Small, “Closed-Box Loudspeaker System, Part 1: Analysis”, J. Audio Eng. Soc., Vol.20, p.p.798-808, 1972.
[3]R.H. Small, “Closed-Box Loudspeaker System, Part 2: Synthesis”, J. Audio Eng. Soc., Vol.21, p.p.11-18, 1973.
[4]W.J. Cunningham, “Non-Linear Distortion in Dynamic Loudspeakers Due to Magnetic Effects”, J. Audio Eng. Soc., Vol. 21, No. 3, p.p. 202-207, 1949.
[5]A.J.M. Kaizer, "Modeling of the Nonlinear Response of an Electrodynamic Loudspeaker by a Volterra Series Expansion", J. Audio Eng. Soc., Vol. 35, p.p. 421-433, 1987.
[6]W. Klippel, “Dynamic Measurement and Interpretation of the Nonlinear Parameters of Electrodynamic Loudspeakers”, J. Audio Eng. Soc., Vol.38, p.p.944-955, 1990.
[7]W. Klippel, “Loudspeaker Nonlinearities – Causes, Parameters, Symptoms”, Klippel GmbH, Dresden, Germany, Available: klippel@klippel.de, p.p.1-69.
[8]I. Aldoshina, A. Voishvillo, and V. Mazin, “Loudspeaker Motor Nonlinear Modeling Based on Calculated Magnetic Field Inside the Gap”, J. Audio Eng. Soc., Vol.42, p.p. 1061-1062, 1994.
[9]I. Aldoshina, A. Voishvillo, and V. Mazin, “Modeling of Flux Modulation Distortion in Moving Coil Loudspeakers by Finite Element Method”, J. Audio Eng. Soc., Vol.43, p.p. 400-409, 1995.
[10]A. Voishvillo, and V. Mazin, “Finite Element Modeling of Eddy Currents and Their Influence on Nonlinear Distortion in Electrodynamic Loudspeakers”, J. Audio Eng. Soc., Vol.43, p.p. 1086-1087, 1995.
[11]M. Rausch, M. Kaltenbacher, and R. Lerch, “Computer-Aided Design of Electrodynamic Loudspeakers by Using a Finite Element Method”, J. Audio Eng. Soc., Convention 111, No.5420, 2001.
[12]Mihelich, J. Ryan, “Loudspeaker Nonlinear Parameter Estimation an Optimization Method”, J. Audio Eng. Soc., Convention 111, No.5420, 2001.
[13]G. Y. Hwang, H. G. Kim, S. M. Hwang, and B. S. Kang, “Analysis of Harmonic Distortion Due to Uneven Magnetic Field in a Micro-Speaker Used for Mobile Phones”, IEEE Transactions on Magnetics, Vol.38 , p.p. 2376-2378, 2002.
[14]B. Merit, G. Lemarquand, V. Lemarquand, “Performances and Design of Ironless Loudspeaker Motor Structures”, Applied Acoustics, Vol. 71, p.p.546-555, 2010.
[15]S. Mowry, “Simplified Simulation Methods for Nonlinear Loudspeaker Parameters”, Voice Coil the Periodical for the Loudspeaker Industry, p.p. 1-9, Available: www.audioXpress.com, 2007.
[16]Benoit Merit , Val?臆ie Lemarquand , Guy Lemarquand , Andrzej Dobrucki , “Motor Nonlinearities in Electrodynamic Loudspeakers: Modelling and Measurement”, Archives of Acoustics, Vol. 34, p.p. 579-590, 2009.
[17]P. Antonio, I. Djurek, D. Djurek, “Modeling of an Electrodynamic Loudspeaker Using Runge-Kutta ODE Solver”, J. Audio Eng. Soc., Convention 122, No.7076, 2007.
[18]C. C. Wang and Z. Y. Lee, “Uniform-Parameter Spline Method for Solving Non-Fourier Heat Conduction Problems”, Numerical Heat Transfer, Part B: Fundamentals”, Vol. 56, p.p. 293-306, 2009.
[19]W. Klippel, “Nonlinear Large-Signal Behavior of Electrodynamic Loudspeakers at Low Frequencies”, J. Audio Eng. Soc., Vol. 40, p.p. 483-496, 1992.
[20]Matlab Reference Guide.
[21]D. J. Button, “Heat Dissipation and Power Compression in Loudspeakers”, J. Audio Eng. Soc., Vol. 40, p.p. 32-41, 1992.
[22]W. Klippel, “Nonlinear Modeling of the Heat Transfer in Loudspeakers”, J. Audio Eng. Soc., Vol. 52, p.p. 3-25, 2004.
[23]W. Klippel, “Assessment of Voice-Coil Peak Displacement X max”, J. Audio Eng. Soc., Vol. 51, p.p. 307-323, 2003. A.N. Thiele, “Loudspeakers in Vented Boxes”, J. Audio Eng. Soc., Vol.19, p.p.382-392, 1971.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top