跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許弘政
研究生(外文):Hung-Cheng Hsu
論文名稱:以3xTg-AD小鼠模式探討不同葉酸衍生物對於晚期阿茲海默症神經病變之治療
論文名稱(外文):Treatment of late-stage Alzheimer's disease with folate derivatives in the 3xTg-AD mice model
指導教授:許瑞芬許瑞芬引用關係陳達夫陳達夫引用關係
指導教授(外文):Rwei-Fen S.HuangTa-Fu Chen
口試委員:陳達夫邱銘章梁鍾鼎
口試日期:2013-07-18
學位類別:碩士
校院名稱:輔仁大學
系所名稱:營養科學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:葉酸亞葉酸阿茲海默症類澱粉蛋白空間記憶能力
外文關鍵詞:folic acidfolinic acidAlzheimer’s diseaseamyloid peptidesspatial memory function
相關次數:
  • 被引用被引用:1
  • 點閱點閱:476
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
細胞與動物實驗指出補充葉酸(folic acid)有助於降低homocysteine,進而減少氧化壓力,增加細胞的存活率。先前實驗室的研究證實葉酸在早期阿茲海默症(Alzheimer’s disease, AD)的進展可以增強AD治療藥物之神經細胞保護效果。Folic acid為食品營養補充劑,folinic acid為臨床治療癌症用藥,此兩種葉酸形式(營養補強與藥物使用)是否能對AD基因轉殖鼠認知功能與腦部病理病變改善,尚不清楚。因此,本研究的目的為探討以基因轉殖triple-transgenic AD (3xTg-AD)小鼠的模式,給予葉酸衍生物對晚期AD神經病變之治療效果。16月齡的40隻3xTg-AD小鼠平均分三組,補充folic acid (FA)組、補充folinic acid (FN)組、未補充對照組control (C),以管灌餵食的方式給予12 mg/kg/day的兩種葉酸衍生物,餵食 3個月。以微生物乳酸菌檢驗法分析組織葉酸含量,以蘇木紫-伊紅染色觀察細胞存活情形,以免疫組織化學染色檢測類澱粉蛋白(amyloid-beta, Aβ)及磷酸化tau,以酵素免疫分析法檢測Aβ 40&42及磷酸化tau,以Morris water maze測試空間記憶學習能力。結果發現,補充葉酸衍生物並未影響動物的攝食與體重,但補充FA (69%)與FN (86%)組的存活率為對照組(54%)之1.3與1.6倍。補充FA及FN組之血清的葉酸營養狀態顯著高於對照組,FA又顯著高於FN (p<0.05),而腦部皮質的葉酸含量則只有FA組顯著高於對照組(p<0.05)。在免疫染色部分,補充FA及FN組的Aβ plaques顯著比對照組來得少。AD神經病理學的指標,Aβ40、Aβ42及磷酸化tau在補充FA及FN組之腦部皆顯著低於控制組(p<0.05)。血清葉酸營養狀態與Aβ 40&42病理學指標皆呈現顯著負相關(p<0.05),皮質營養狀態與病理學指標則只有Aβ40有顯著負相關。但在空間記憶學習部分,在三組中無看到明顯的差異。綜合上述,葉酸補充會增加血清葉酸含量,可能可以降低Aβ的沉積,而對空間記憶能力則無明顯的改善,但葉酸補充的確能增加存活率,因此葉酸補充可能可延緩阿茲海默症之進展。
Cell line and animal model had indicated that folate supplementation could help lower homocysteine levels and decrease oxidative stress. We have previously reported that folic acid potentiated effects of Alzheimer’s disease (AD) drug on neuronal protection in early-stage AD development. Folic acid is a kind of nutrient supplement, and folinic acid is a clinical cancer drug. However, in this study, the treatment of late-stage AD with folate derivatives in 3xTg-AD transgenic mice was investigated. Forty 3xTg-AD mice at 16 month-old were divided into three groups fed with the diet in the absence (Control) or presence of folic acid (FA) and folinic acid (FN) supplements (12 mg/kg/day by force feeding). Spatial memory function was assayed by water-maze test before mice were sacrificed at 19 month-old. The data revealed that FA and FN groups had significantly higher levels of serum folate than the controls group after 3 month supplementation (p<0.05). The AD neuropathological markers of Aβ40, Aβ42 or phosphotau levels were significantly lower in the brains of FA and FN groups as compared with the controls (p<0.05). Although these reduced brain pathological severity by FA or FN supplement were not associated with cognition improvement, survival rates of FA (69%) and FN groups (86%) was 1.6 fold-increased in relative to the controls (54%) at 19 month-old. Taken together, the data demonstrated that FA and FN treatments may alleviate pathological severity of late-stage Alzheimer’s disease associated with increased survival rate of 3xTg-AD mice.
中文摘要…………………………………………………………Ⅰ
英文摘要…………………………………………………………Ⅱ
縮寫表……………………………………………………………Ⅲ
致謝…………………………………………………………………Ⅳ
表目錄……………………………………………………………Ⅷ
圖目錄………………………………………………………………Ⅸ
第一章 文獻回顧…………………………………………………………1
一、阿茲海默症致病機轉……………………………………………1
(一) 類澱粉蛋白之形成…………………………………………2
(二) 類澱粉蛋白所引發粒線體之氧化傷害……………………………3
(三) Tau蛋白與Aβ之關係及對阿茲海默症之影響………………4
二、葉酸與阿茲海默症罹患之風險性……………………………………6
(一) 葉酸單碳代謝………………………………………………………………6
(二) 葉酸與阿茲海默症之相關性………………………………8
三、研究動機與目標……………………………………………………………10
第二章 實驗架構與材料方法……………………………………………12
一、實驗設計………………………………………………………………12
二、實驗材料………………………………………………………………13
(一) 實驗動物……………………………………………………………13
(¬二) 動物飼料…………………………………………………………14
三、實驗方法………………………………………………………………14
(一) 動物飼養……………………………………………………………14
(二) 葉酸製備……………………………………………………………14
(三) 動物腦組織處理…………………………………………………14
(四) 水迷宮試驗…………………………………………………………15
(五) 葉酸含量分析………………………………………………………16
(六) Aβ 40&42酵素免疫分析法………………………………17
(七) 磷酸化及全部tau酵素免疫分析法…………………18
(八) 蘇木紫-伊紅染色…………………………………………………19
(九) Aβ42免疫組織化學染色………………………………………19
(十) 磷酸化tau免疫組織化學染色……………………………20
四、資料統計分析…………………………………………………………21
第三章 結果………………………………………………………………22
第四章 討論………………………………………………………………26
第五章 結論………………………………………………………………31
第六章 參考文獻………………………………………………………45

表目錄
表一、補充餵食葉酸衍生物對於3xTg-AD小鼠體重與器官重量及存活率………………………………………………………………………32
表二、補充餵食葉酸衍生物對於3xTg-AD小鼠大腦皮質與血清葉酸營養之影響…………………………………………………………32

圖目錄
圖一、兩種葉酸衍生物的化學結構與結構式……………………………………………………………………………………………………………………………33
圖二、補充餵食葉酸衍生物後3xTg-AD小鼠的H&E染色變化………………………………………………………………………………………………34
圖三、補充餵食葉酸衍生物對於3xTg-AD小鼠Aβ免疫組織化學染色之響………………………………………………………………………35
圖四、補充餵食葉酸衍生物對於3xTg-AD小鼠海馬迴的磷酸化tau免疫組織化學染色之影響…………………………………36
圖五、補充餵食葉酸衍生物對於3xTg-AD小鼠杏仁核的磷酸化tau免疫組織化學染色之影響…………………………………37
圖六、補充餵食葉酸衍生物對於3xTg-AD小鼠的Aβ40沉積量之影響………………………………………………………………………………38
圖七、補充餵食葉酸衍生物對於3xTg-AD小鼠的Aβ42沉積量之影響………………………………………………………………………………39
圖八、補充餵食葉酸衍生物對於3xTg-AD小鼠的全部tau及磷酸化tau量之影響…………………………………………………………40
圖九、3xTg-AD小鼠大腦皮質葉酸營養狀態與大腦病理學指標間的皮爾森相關性………………………………………………………41
圖十、3xTg-AD小鼠血清葉酸營養狀態與皮質病理學指標之間的皮爾森相關性……………………………………………………………42
圖十一、3xTg-AD小鼠血清葉酸營養狀態與大腦病理學指標之間的皮爾森相關性…………………………………………………………43
圖十二、補充餵食葉酸衍生物對於3xTg-AD小鼠在Morris water maze的逃離潛伏期之變化………………………………44


唐銘圻 (2010) 葉酸補充合併阿茲海默症臨床藥物Memantine對Tg2576小鼠腦部基因之調節與降低類澱粉蛋白誘發神經細胞毒性之機制。私立輔仁大學營養科學系碩士論文
Agarwal R, Chhillar N, Kushwaha S, Singh NK, Tripathi CB. Role of vitamin B(12), folate, and thyroid stimulating hormone in dementia: A hospital-based study in north Indian population. Ann Indian Acad Neurol. 2010;13:257-62.
Alexeyev MF, Ledoux SP, Wilson GL. Mitochondrial DNA and aging. Clin Sci. 2004;107:355-64.
Alzheimer A. Uber eine eigenartige Erkrankung der Hirnrinde. [On a peculiar disease of the cerebral cortex]. Allgemeine Zeitschrift fuer Psychiatrie und Psychischgerichtliche Medizin. 1907;64:146-8.
Alzheimer's Association. 2010 Alzheimer's disease facts and figures. Alzheimers Dement.2010;6:158-94.
Alzheimer's Association. 2011 Alzheimer's disease facts and figures. Alzheimers Dement. 2011;7:208-44.
Anguera MC, Suh JR, Ghandour H, Nasrallah IM, Selhub J, Stover PJ. Methenyltetrahydrofolate synthetase regulates folate turnover and accumulation. J Biol Chem. 2003;278:29856-62.
Behl C, Moosmann B. Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radic Biol Med. 2002;33: 182-91.
Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM. Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron. 2005;45:675-88.
Brandeis R, Brandys Y, Yehuda S. The use of the Morris Water Maze in the study of memory and learning. Int J Neurosci. 1989;48:29-69
Brion JP, Passareiro H, Nunez J, Flament Durand J. Mise en evidence de la immunologique de la protein tau au lesions de degeneresescence neurofibrillaire de la maladie Alzheimer. Arch Biol (Brux). 1985;95:229-35.
Broadbent NJ, Squire LR, Clark RE. Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci USA. 2004;101:14515-20.
Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C. Assembly and aggregation properties of synthetic Alzheimer's A4/beta amyloid peptide analogs. J Biol Chem. 1992;267:546-54.
Chen TF, Chiu MJ, Huang CT, Tang MC, Wang SJ, Wang CC, Huang RF. Changes in dietary folate intake differentially affect oxidised lipid and mitochondrial DNA damage in various brain regions of rats in the absence/presence of intracerebroventricularly injected amyloid β-peptide challenge. Br J Nutr. 2011;105:1294-302.
Chen TF, Huang RF, Lin SE, Lu JF, Tang MC, Chiu MJ. Folic Acid potentiates the effect of memantine on spatial learning and neuronal protection in an Alzheimer's disease transgenic model. J Alzheimers Dis. 2010;20:607-15.
Chinnery PF, Samuels DC, Elson J, Turnbull DM. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet. 2002;360:1323-5.
Clavaguera F et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11:909-13.
de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones T, Hyman BT. Caspase activation precedes and leads to tangles. Nature. 2010; 464:1201-4.
D'Hooge R and De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews. 2001;36:60-90.
Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P. Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging. 1995;16:285-98; discussion 298-304.
Djukic A.. Folate-Responsive Neurologic Diseases. Pediatr Neurol. 2007;37:387-97.
Duyckaerts C. Looking for the link between plaques and tangles. Neurobiol Aging. 2004;25:735-9.
Eisenga BH, Collins TD, McMartin KE.Incorporation of 3H-label from folic acid is tissue-dependent in folate-deficient rats. J Nutr. 1992 Apr;122:977-85.
Fuh JL, Wang SJ. Dementia in Taiwan: past, present, and future. Acta Neurol Taiwan. 2008;17:153-61
Fuso A, Nicolia V, Cavallaro RA, Ricceri L, D'Anselmi F, Coluccia P, Calamandrei G, Scarpaa S. B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-β deposition in mice. Mol Cell Neurosci. 2008;37:731-46.
Gamblin TC et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc Natl Acad Sci USA. 2003;100:10032-7.
Garcia-Sierra F, Mondragon-Rodriguez S, Basurto-Islas G. Truncation of tau protein and its pathological significance in Alzheimer disease. J Alzheimers Dis. 2008;14:401-9.
Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984b;122:1131-5.
Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984a;120:885-90.
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubuleassociated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3:519-26.
GomezIsla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol. 1997;41: 17-24.
Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science. 2001;293:1491-5.
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986; 83:4913-7.
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297: 353-6.
Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256:184-85.
Homocysteine effects on brain volumes mapped in 732 elderly individuals. Neuroreport. 2011;22:391-5.
Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996;274:99-102.
Hsu MJ, Sheu JR, Lin CH, Shen MY, Hsu CY. Mitochondrial mechanisms in amyloid beta peptide-induced cerebrovascular degeneration. Biochim Biophys Acta. 2009;1800:290-6.
Iqbal K et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta. 2005;1739:198-210.
Ittner LM et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer disease mouse models. Cell. 2010;142:387-97.
Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994;13:45-53.
Jarrett JT, Berger EP, Lansbury PT Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry. 1993;32:4693-7.
Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci. 2001;21:372-81.
Kitaguchi N, Takahashi Y, Tokushima Y, Shiojiri S, Ito H. Novel precursor of Alzheimer's disease amyloid protein shows protease inhibitory activity. Nature. 1988;331:530-32.
Kitamura Y, Kusuhara H, Sugiyama Y. Basolateral efflux mediated by multidrug resistance-associated protein 3 (Mrp3/Abcc3) facilitates intestinal absorption of folates in mouse. Pharm Res. 2010;27:665-72.
Kojro E, Fahrenholz F. The non-amyloidogenic pathway: structure and function of alpha-secretases. Subcell Biochem. 2005;38:105-27.
Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA. 1986;83:4044-8.
Lee S, Lemere CA, Frost JL, Shea TB. Dietary supplementation with S-adenosyl methionine delayed amyloid-β and tau pathology in 3xTg-AD mice. J Alzheimers Dis. 2012;28:423-31.
Lewis J et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001; 293:1487-91.
Liang CT, Chueh LL, Pang VF, Zhuo YX, Liang SC, Yu CK, Chiang H, Lee CC, Liu CH. A non-biotin polymerized horseradish-peroxidase method for the immunohistochemical diagnosis of canine distemper. J Comp Pathol. 2007;136:57-64.
Lipp HP, Wolfer DP. Genetically modified mice and cognition. Curr Opin Neurobiol. 1998;8:272-80.
Maruszak A, Gaweda-Walerych K, Sołtyszewski I, Zekanowski C. Mitochondrial DNA in pathogenesis of Alzheimer's and Parkinson's diseases. Acta Neurobiol Exp. 2006;66:153-76.
Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron. 2008;60:748-66.
Morris R, Mucke L. Alzheimer’s disease: a needle fromthe haystack. Nature. 2006;440:284-5.
Newman EM, Tsai JF. Microbiological analysis of 5-formyltetrahydrofolic acid and other folates using an automatic 96-well plate reader. Anal Biochem. 1986;154:509-15.
Oddo S, Vasilevko V, Caccamo A, Kitazawa M, Cribbs DH, LaFerla FM. Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem. 2006;281:39413-23.
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362: 329-44.
Rajagopalan P, Hua X, Toga AW, Jack CR Jr, Weiner MW, Thompson PM. Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol. 2002;192;131-7.
Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res Rev. 2005;49:618-32.
Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, LaFerla FM, Rohn TT, Cotman CW. Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest. 2004; 114:121-30.
Roberson ED, ScearceLevie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L. Reducing endogenous tau ameliorates amyloid beta induced deficits in an Alzheimer’s disease mouse model. Science. 2007;316:50-4.
Selkoe DJ. The molecular pathology of Alzheimer's disease. Neuron. 1991;6:487-98.
Smach MA, Jacob N, Golmard JL, Charfeddine B, Lammouchi T, Ben Othman L, Dridi H, Bennamou S, Limem K. Folate and homocysteine in the cerebrospinal fluid of patients with Alzheimer's disease or dementia: a case control study. Eur Neurol. 2011;65:270-8.
Sontag E, Nunbhakdi-Craig V, Sontag JM, Diaz-Arrastia R, Ogris E, Dayal S,Lentz SR, Arning E, Bottiglieri T. Protein Phosphatase 2A Methyltransferase Links Homocysteine Metabolism with Tau and Amyloid Precursor Protein Regulation. J Neurosci. 2007;27:2751-9.
Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol. 1998;8:387-402.
Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev. 1992;99:195-231.
Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791-800
Varela-Moreiras G, Selhub J. Long-term folate deficiency alters folate content and distribution differentially in rat tissues. J Nutr. 1992 ;122:986-91.
Vassar R et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286:735-41.
Vassar R. beta-Secretase, APP and Abeta in Alzheimer’s disease. Subcell Biochem. 2005;38:79-103.
Velliquete RA, O’Connor T, Vassar R. Energy inhibition elevates beta-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer’s disease pathogenesis. J Neurosci. 2005;25:10874-83.
Wang YP, Biernat J, Pickhardt M, Mandelkow E, Mandelkow EM. Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. Proc Natl Acad Sci USA. 2007;104:10252-7.
Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH. The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci. 2002;22:1858-67.
Yin H, Kuret J. C-terminal truncation modulates both nucleation and extension phases of tau fibrillization. FEBS Lett. 2006;580:211-5.
Zhang CE, Wei W, Liu YH, Peng JH, Tian Q, Liu GP, Zhang Y, Wang JZ. Hyperhomocysteinemia Increases β-Amyloid by Enhancing Expression of γ-Secretase and Phosphorylation of Amyloid Precursor Protein in Rat Brain. Am J Pathol. 2009;174:1481-91.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top