跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 04:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪健雄
研究生(外文):Jiang-Shiung Hong
論文名稱:次波長狹縫下增強穿透之表面電漿子效應
論文名稱(外文):Enhanced transmission in subwavelength apertures due to surfaceplasmon effect
指導教授:陳寬任
指導教授(外文):Kuan-Ren Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:64
外文關鍵詞:Enhanced transmissionDipole effectMetallic gratingsSurface plasmonSubwavelength aperture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
 Due to the diffraction theory, light transmission through a subwavelength hole is very low, but by excitation of surface plasmon, it could be overcome. Hole arrays, and surface corrugation on metal shows the enhanced transmission in this way. A similar result was done in microwave regime.

 Our work uses Finite-Difference Method to observe the enhanced transmission phenomenon with subwavelength apertures. With a normal incident wave of which the wavelength is about 10 times larger than the slit, the result is consistent with the previous work.

 However, in our simulation, what the surprising result is that we found the enhanced transmission is not mainly due to the surface plasmon effects but by the dipole/quadrapole field emission. The physical mechanism of the enhanced transmission provides us a more fundamental explanation which is different from previous work.
1Introduction…………………………………..………………………1
2 Transmission Light through small holes...............................................4
2.1 Theory of Diffraction by Small Holes .......................................4
2.2 Extraordinary optical transmission............................................5
2.2.1 Strong Enhancement of transmitted light due to the
hole array ......................................................................6
2.2.2 Theory of Enhanced Transmission Resonances through
narrow slits on metallic gratings...................................7
2.3 Transmission Light through subwavelength aperture with
metallic surface corrugations.....................................................9
2.3.1 Beaming light from a subwavelength aperture............10
2.3.2 Highly Directional Emission from a single
subwavelength aperture surrounded by surface
corrugation ...................................................................12
2-4 Enhanced transmission of microwave radiation .....................15
3Simulation Model .............................................................................17
3.1 Simulation System ...................................................................17
3.2 Finite-Difference Time-Domain Method.................................18
3.2.1 Introduction to Maxwell’s Equation ............................19
3.2.2 Reduction to two dimensions.......................................21
3.2.3 The Yee Algorithm.......................................................21
3.2.4 Finite-Difference Expressions for Maxwell’s Equations
......................................................................................23
3.3 Boundary Conditions ...............................................................26
3.3.1 Absorbing Boundary Conditions .................................27
3.3.2 Periodic Boundary Conditions.....................................27
3.4 Dielectric constant of metal .....................................................29
4 Simulation results ............................................................................32
4.1 Simulation system....................................................................32
4.2 Simulation result......................................................................33
4.3 Physical Process.....................................................................36
4.3.1 Transmission Phenomenon.......................................36
4.3.2 Beaming light..............................................................44
4.4 Dipole/quadrapole effect..........................................................52
4.4.1 Quadrapole vs. Dipole radiation.................................52
4.4.2 Quadrapole Radiation vs. Suface plasmon resonances.....58
4.5 Conclusion ...............................................................................61
5 Sumarry.............................................................................................62
[1] H. A. Beth, Phys. Rev. 66, 163 (1944).
[2] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff,
Nature, 391, 667 (1998).
[3] J. A. Porto, F. J. Garcia- Vidal, J. B. Pendry, Phys. Rev. Lett., 83,
2845 (1999).
[4] S. Collin, F. Pardo, R. Teissier, J. –L. Pelouard, Phys. Rev. B, 63,
033107 (2001).
[5] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno,
F. J. Garcia-Vidal, T. W. Ebbesen, Science, 297, 820 (2002)
[6] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, T. W.
Ebbesen, Phys. Rev. Lett., 90, 167401 (2003)
[7] S. Sena Akarca-Biyikli, Irfan Bulu, Ekmel Ozbay, App. Phys. Lett.,
85, 1098 (2004)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文