跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇聖傑
研究生(外文):Sheng-Jie Su
論文名稱:精密低壓射臘模具快速製造技術
論文名稱(外文):Rapid Manufacturing Technology for Precision Low Pressure Wax Injecting Mold
指導教授:郭啟全郭啟全引用關係
指導教授(外文):Chil-Chyuan Kuo
口試委員:劉福興謝政道
口試日期:2012-07-06
學位類別:碩士
校院名稱:明志科技大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:159
中文關鍵詞:融熔擠製沉積成型;低壓射蠟模具;尺寸精度;表面粗糙度;收縮
外文關鍵詞:Fused Deposition ModelingA Low Pressure Wax Injection MoldDimensional AccuracySurface RoughnessShrinkage
相關次數:
  • 被引用被引用:2
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
運用融熔擠製沉積成型快速原型系統可以製作出低壓射蠟模具,然而所製作出的快速模具表面精度卻不佳,主要的原因為快速模具係運用層加工來製作,本研究提出一個具經濟效益之模具表面填補技術來改善表面粗糙度,以及提出一個高尺寸精度與低表面粗糙度之低壓射蠟模具快速製造技術。實驗結果發現,填補後低壓射蠟模具所製作之蠟型,中心線平均表面粗糙度Ra值可以從1710 µm改善至276 µm,表面粗糙度改善率可以達83.85 %。然而,快速原型件之Z軸誤差以及蠟型收縮誤差問題,可以藉由補償來提升尺寸的精度,運用此模具所製作的蠟型不但具有優良尺寸精度還具備優良表面精度,蠟型之平均尺寸精度誤差率可以從未補償1.76 %降低至0.66 %,蠟型表面之平均粗糙度改善率可達85.71 %,低壓射蠟20次之後,模具表面並未見填補材料脫落,蠟型表面也並未發現脫落之填補材料,經過拉伸試驗後得知金屬樹脂材料與快速原型件材料之間抗拉強度約為3.86 MPa,本研究所提出之精密低壓射蠟模具之尺寸修整補償涵蓋方法簡單、製程具備彈性、縮短模具開發時間、無複雜數學運算、降低設計尺寸錯誤、低製作成本,以及優良尺寸精度。

關鍵字: 融熔擠製沉積成型;低壓射蠟模具;尺寸精度;表面粗糙度;收縮

A low pressure wax injecting mold can be fabricated by use of fused deposition modeling rapid prototyping, whereas, the surface precision of the rapid mold fabricated is not preferred. In the study, a new technique is proposed for rapid manufacturing a low pressure wax injection mold with high surface finish and high dimensional accuracy. In the experiment results, it is found that after padding the wax pattern fabricated by low pressure wax injection mold, the center line average surface roughness Ra value can be improved from 1710 µm to 276 µm, so the surface roughness improvement rate can be reached to 83.85 %. However, the Z axis deviation and wax pattern shrinking deviation problems, can be improved with compensation to enhance size precision. Wax patterns produced from this mold have not only better dimensional accuracy but also better surface finish. The average relative error of dimension of wax patterns can be reduced from 1.76% to 0.66%. Surface roughness improvement rate of wax patterns of up to 85.71% can be achieved. And after 20 times of low pressure wax injecting conducted by low pressure wax injecting mold, there is no shed of padding materials found on the mold surface, through tension test, it is found that the tensile strength between metal resin materials and rapid prototype materials is about 3.86 MPa, the padding coverage method for size of precision low pressure wax injecting mold proposed by the study, is simple, flexible in process, time saving in mold developing, no complex mathematics calculation, design size deviation reduced, low fabrication cost, and preferred size precision.
Keywords:Fused Deposition Modeling;A Low Pressure Wax Injection Mold; Dimensional Accuracy;Surface Roughness;Shrinkage

明志科技大學碩士學位論文指導教授推薦書
明志科技大學碩士學位論文口試委員會審定書
明志科技大學學位論文授權書
誌謝
摘要
Abstract
目錄
表目錄
圖目錄
第一章 緒論
1.1 前言
1.2 研究動機與目的
1.3 論文架構
第二章 文獻回顧
2.1 FDM快速原型系統產業發展狀況背景介紹
2.1.1 FDM快速原型系統歷年來市場統計
2.1.2 各類廣泛快速原型製造評價
2.1.3 運用FDM快速原型之產業趨勢
2.2 FDM快速原型技術與發展
2.2.1 21世紀的快速原型技術相關議題
2.2.2 專為FDM快速原型而開發之五軸機器手臂
2.2.3 快速原型技術與快速模具整合製造系統
2.3 改善FDM快速原型件之表面粗糙度研究
2.3.1 藉由FDM快速原型的積層加工來改善表面粗糙度
2.3.2 探討快速原型技術之表面粗糙度改善
2.3.3 提升融熔擠製成型之原型件表面粗糙度研究
2.3.4 融熔擠製成型定量化學處理分析減少表面粗糙度
2.3.5 提出改變層疊的成型方向方式有效減少RPMR
2.3.6 預測層疊製造的表面粗糙度之量測
2.4 應用於FDM快速原型系統新型材料研究
2.4.1 融熔擠製成型技術研發新金屬及聚合材料的快速模具
2.4.2 應用短纖維強化材料於融熔擠製成型系統
2.5 FDM快速原型件成形尺寸精度影響之探討
2.6 高彈性FDM快速原型系統研發
2.7 運用FDM快速原型系統於支架製作研究
2.8 運用FDM快速原型系統於頭顱植入物研究
2.9 微型模具之研製技術研究
2.9.1 矽膠模具和聚氨酯樹脂之微型模具製作與蠟型分析
2.9.2 微型精密金屬模具之鑄造技術研究
2.10 FDM快速原型相關專利搜索說明
2.10.1 加熱擠出式快速原型機
2.10.2 具有旋轉主軸及噴墨列印功能的快速原型機
2.10.3 精密快速原型機之改良結構
2.10.4 快速原型機
2.10.5 具有細絲供應轉軸監測之快速原型系統
2.10.6 建構3D模型設備系統
2.11 FDM快速原型件去除支撐材料相關專利搜索說明
2.11.1 去除快速原型件支撐材料的方法和設備
2.11.2 清除材料清洗機
第三章 研究規劃與方法
3.1 實驗設備
3.2 量測設備
3.3 實驗材料
3.4 研究載具製作流程
第四章 低壓射蠟模具表面粗糙度改善填補技術
4.1 前言
4.2 實驗過程
4.3 結果與討論
4.4 結論
第五章 高尺寸精度與低表面粗糙度之低壓射蠟模具快速製造技術
5.1 前言
5.2 實驗過程
5.3 結果與討論
5.3.1 快速原型件製作後之尺寸變化研究
5.3.2 蠟型尺寸收縮率研究 111
5.3.3 快速原型件具有凹凸特徵製作後之尺寸變化研究
5.3.4 高尺寸精度與低表面粗糙度之低壓射蠟模具研究
5.4 結論
第六章 結論與未來展望
6.1 結論
6.2 未來展望
參考文獻

[1]Bibb, R, J. Winder. (2010)." A review of the issues surrounding three-dimensional computed tomography for medical modelling using rapid prototyping techniques." Radiography 16(1): 78-83.
[2]Chua, C.K., K.F. Leong, et al. (2003)." Rapid Prototyping: Principles and Applications." World Scientific, Singapore, 1-23.
[3]King, D., T. Tansey. (2002)." Alternative materials for rapid tooling." Journal of Materials Processing Technology 121(2-3): 313-317.
[4]Rosochowski, A., A. Matuszak. (2000). "Rapid tooling: the state of the art." Journal of Materials Processing Technology 106(1-3): 191-198.
[5]Kuo, C. C., M. Y. Lai. (2011)." Development of an automatic vacuum degassing system and parameters optimization for degassing process." Indian Journal of Engineering and Materials Sciences 18(6): 405-410.
[6]Kuo, C. C. (2012)." A simple and cost-effective method for fabricating epoxy-based composites mold inserts." Materials and Manufacturing Processes 27(4): 383-388.
[7]Francis E. H. Tay, et al. (2002)." Laser sintered rapid tools with improved surface finish and strength using plating technology." Journal of Materials Processing Technology 121(2-3): 318-322.
[8]Yang, Y., S.P. Hannula. (2008)." Development of precision spray forming for rapid tooling." Materials Science and Engineering 477(1-2): 63-68.
[9]Santos, E. C., M. Shiomi, et al. (2006)." Rapid manufacturing of metal components by laser forming." International Journal of Machine Tools and Manufacture 46(12-13): 1459-1468.
[10]Akula, S., K.P. Karunakaran. (2006)." Hybrid adaptive layer manufacturing: An Intelligent art of direct metal rapid tooling process." Robotics and Computer-Integrated Manufacturing 22(12-13): 113-123.
[11]Ferreira, C. (2004)." Rapid tooling of die DMLS inserts for shoot-squeeze moulding (DISA) system." Journal of Materials Processing Technology 155-156(0): 1111-1117.
[12]Kaldos, A., H. J. Pieper, et al. (2004)." Laser machining in die making-a modern rapid tooling process." Journal of Materials Processing Technology 155-156(0): 1815-1820.
[13]King, D., T. Tansey. (2003)." Rapid tooling: selective laser sintering injection tooling." Journal of Materials Processing Technology 132(1-3): 42-48.
[14]Kuo, C. C., Y. C. Tsou, et al. (2012)." Enhancing the efficiency of removing support material from rapid prototype part." Materialwissenschaft und Werkstofftechnik 43(3): 234-240.
[15]Masood, S. H., W. Q. Song. (2003)." Development of new metal/polymer materials for rapid tooling using Fused deposition modelling." Materials & Design 25(7): 587-594.
[16]Gronet, P. M., G. A. Waskewicz, et al. (2003)." Preformed acrylic cranial implants using fused deposition modeling: A clinical report." The Journal of Prosthetic Dentistry 90(5): 429-433.
[17]Allahverdi, M., S. C. Danforth, et al. (2001)." Processing of advanced electroceramic components by fused deposition technique." Journal of the European Ceramic Society 21(10-11): 1485-1490.
[18]P. Hilton, PF. Jacobs," Rapid tooling: technologies and industrial applications, " New York: Marcel Dekker, 2000.
[19]Karapatis, N., J. Griethuysen, et al. (1998)." Direct rapid tooling: a review of current research." Rapid Prototyping Journal 4(2): 77-89.
[20]D. Pham, S. Dimov," Rapid manufacturing: the technologies and applications of rapid prototyping and rapid tooling," London: Springer; 2001.
[21]Pandey, P. M., N. V. Reddy, et al. (2003)." Improvement of surface finish by staircase machining in fused deposition modeling." Journal of Materials Processing Technology 132(1-3): 323-331.
[22]Ahn, D., J. H. Kweon, et al. (2009)." Representation of surface roughness in fused deposition modeling." Journal of Materials Processing Technology 209(15-16): 5593-5600.
[23]Galantucci, L.M., F. Lavecchia, et al. (2009)." Experimental study aiming to enhance the surface finish of fused deposition modeled parts." CIRP Annals - Manufacturing Technology 58(1): 189-192.
[24]Pham, D. T., R. S. Gault. (1998)." A comparison of rapid prototyping technologies." International Journal of Machine Tools and Manufacture 38(10-11): 1257-1287.
[25]Kulkarni, P., D. Dutta. (2000)." On the Integration of Layered Manufacturing and Material Removal Process." International Journal of Machine Science and Engineering 122(0): 100-108.
[26]Sood, A. K., R. K. Ohdar, et al. (2009)." Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method." Materials & Design 30(10): 4243-4252.
[27]郭啟全、鄭正元,"快速成型原理與應用",高立圖書出版社,ISBN:986-412-201-0,中華民國九十三年。
[28]Thrimurthulu, K., P. M. Pandey, et al. (2004)." Optimum part deposition orientation in fused deposition modeling." International Journal of Machine Tools and Manufacture 44(6): 585-594.
[29]Kalita, S. J., S. Bose, et al. (2003)." Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling." Materials Science and Engineering: C 23(5): 611-620.
[30]Kruth, J. P., M. C. Leu, et al. (1998)." Progress in Additive Manufacturing and Rapid Prototyping." CIRP Annals - Manufacturing Technology 47(2): 525-540.
[31]http://wohlersassociates.com.
[32]Kochan, D., C. C. Kai, et al. (1999)." Rapid prototyping issues in the 21st century." Computers in Industry 39(1): 3-10.
[33]Hamade, R.F., F. Zeineddine, et al. (2005)." Modelangelo: a subtractive 5-axis robotic arm for rapid prototyping." Robotics and Computer-Integrated Manufacturing 21(2): 133-144.
[34]Ding, Y., H. Lan, et al. (2004)." An integrated manufacturing system for rapid tooling based on rapid prototyping." Robotics and Computer-Integrated Manufacturing 20(4): 281-288.
[35]Galantucci, L. M., F. Lavecchia, et al. (2010)." Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling." CIRP Annals - Manufacturing Technology 59(1): 247-250.
[36]Ahn, D., H. Kim, et al. (2007)." Fabrication direction optimization to minimize post-machining in layered Manufacturing." International Journal of Machine Tools & Manufacture 47(3-4): 593-606.
[37]Ahn, D., H. Kim, et al. (2009)." Surface roughness prediction using measured data and interpolation in layered manufacturing." Journal of Materials Processing Technology 209(2): 664-671.
[38]Zhong, W., F. Li, et al. (2001)." Short fiber reinforced composites for fused deposition modeling." Materials Science and Engineering: A 301(2): 125-130.
[39]Choi, J. W., F. Medina, et al. (2011)." Development of a mobile fused deposition modeling system with enhanced manufacturing flexibility." Journal of Materials Processing Technology 211(3): 424-432.
[40]Chen, Z., D. Li, et al. (2005)." Fabrication of osteo-structure analogous scaffolds via fused deposition modeling." Scripta Materialia 52(2): 157-161.
[41]Tang, Y., W. K. Tan, et al. (2007)." Micro-mould fabrication for a micro-gear via vacuum casting." Journal of Materials Processing Technology 192-193(0): 334-339.
[42]LI, B.-S., M-X, REN, et al. (2008)." Microstructure of Zn-Al4 alloy microcastings by micro precision casting based on metal mold." Transactions of Nonferrous Metals Society of China 18(2): 327-332.
[43]羅仁權、鄒治華、李維仁,"加熱擠出式快速原型機",專利號碼:448833,中華民國九十年。
[44]吳修哲、WU HSIU CHE," 具有旋轉主軸及噴墨列印功能的快速原型機",公開號碼:200526386,中華民國九十四年。
[45]羅仁權、鄒治華、張益誠,"精密快速原型機之改良結構",專利號碼:194468,中華民國九十一年。
[46]張仲卿," 快速原型機",專利號碼:207731,中華民國九十二年
[47]湯瑪士J.大林、伯納C.尼爾森 、凱文D.達克,"具有細絲供應轉軸監測之快速原型系統",專利號碼:124205,中華民國八十九年。
[48]D. Simmons、William 、Matney .Jr,"Modeling Apparatus for three dimension objects",US 5,340,433,1994.
[49]M. Barr , S.T .Chaudthry,"Apparatus and method of removing water soluble support material from rapid prototype part",US 7,546,841,2009.
[50]P.W. Linton、B. G. Epperson、H.W. Hardinge 、D. Alan,"Parts washer",US 6,109,277,2000.
[51]楊聖助,"低熔合應用於高爾夫球頭快速射蠟模具製作之研究",建國科技大學自動化工程系 碩士論文,中華民國九十六年。
[52]Ha, S., K. Kim. (2010)." Void growth and coalescence in f.c.c. single crystals." International Journal of Mechanical Sciences 52(7): 863-873.
[53]Gao, X., T. Wang, et al. (2005)." On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution." International Journal of Solids and Structures 42(18-19): 5097-5117.
[54]Yatsuzuka, M., J. Tateiwa, et al. (2006)." Evaluation of pinhole defect in DLC film prepared by hybrid process of plasma-based ion implantation and deposition." Vacuum 80(11-12): 1351-1355.
[55]Joshi, U.-A. S.-C. Sharma, et al. (2011)." Analysis of elastic properties of carbon nanotube reinforced nanocomposites with pinhole defects." Computational Materials Science 50(11): 3245-3256.
[56]Williams, R.E., V.L. Melton. (1998)." Abrasive flow finishing of stereo-lithography prototypes." Rapid Prototyping Journal 4(2): 56-67.
[57]Kulkarni, P., D. Dutta. (1996)." An accurate slicing procedure for layered manufacturing." Computer-Aided Design 28(9): 683-–697.
[58]Pandey, P.M., N.V. Reddy, et al. (2003)." Real time adaptive slicing for fused deposition modeling." International Journal of Machine Tools and Manufacture 43(1): 61-71.
[59]Rezavand, S.A.M., A.H. Behravesh. (2007)." An experimental investigation on dimensional stability of injected wax patterns of gas turbine blades." Journal of Materials Processing Technology 182(1-3): 580-587.
[60]Dong, Y. W., K. Bu, et al. (2011)." Determination of wax pattern die profile for investment casting of turbine blades." Transactions of Nonferrous Metals Society of China 21(2): 378-387.
[61]Rahmati, S., M. R. Rezaei, et al. (2009)." Design and Manufacture of a Wax Injection Tool for Investment Casting Using Rapid Tooling." Tsinghua Science & Technology 14, Supplement 1(0): 108-115.
[62]Yarlagadda, P. K.D.V., T. S. Hock. (2003)." Statistical analysis on accuracy of wax patterns used in investment casting process." Journal of Materials Processing Technology 138(1-3): 75-81.
[63]Paul, B. K., V. Vinay. (2001)." Effect of Layer Thickness and Orientation Angle on Surface Roughness in Laminated Object Manufacturing." Journal of Manufacturing Processes 3(2): 94-101.
[64]Ito, M., T. Yamagishi, et al. (1996)." Effect of selected physical properties of waxes on investments and casting shrinkage." The Journal of Prosthetic Dentistry 75(2): 211-216.
[65]Kuo, C. C., S. J. Su." Improvement of surface quality by filling materials in fused deposition modeling." 2012 International Conference on Electronic and Materials, Shanghai, China, August 1-2, 2012.
[66]葉至哲,"田口方法於FDM快速原型機台成品精度改善之研究",東海大學工業設計學系 碩士論文,中華民國九十六年
[67]Steel Castings Handbook, sixth edition, Barbara linskey, ASM International, pp. 8-16, 1995.
[68]Arenas, J. M., C . Alia, et al. (2012)." Multi-criteria selection of structural adhesives to bond ABS parts obtained by rapid prototyping." International Journal of Adhesion & Adhesives 33(0): 67-74.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top