跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 08:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李孝祥
研究生(外文):SIAO-SIANG LI
論文名稱:添加高熱值醇類提升二甲胺廢水在連續式超臨界水氧化之去除率
論文名稱(外文):Enhance the Degradation of Dimethylamine Contained Wastewater in Continuous Supercritical Water Oxidation by Charging Combustible Alcohols
指導教授:喻家駿
指導教授(外文):Jia-jyun Yu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:78
中文關鍵詞:總有機碳高熱值醇類二甲胺連續式超臨界水氧化
外文關鍵詞:supercritical water oxidationdimethylaminehigh heat value of alcoholtotal organic carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
連續式超臨界水氧化(Supercritical water oxidation, SCWO)技術是一項具有高效率的有機廢水處理技術,利用水作為反應的媒介,在高於水的超臨界溫度、壓力(Tc≥374℃, Pc≥218atm)供給充足的氧氣使有機污染物在超臨界水中產生快速的氧化分解反應。連續式超臨界水氧化技術與傳統濕式氧化技術的差異,主要為有效處理含高總有機碳(Total organic carbon, TOC)之有機廢水,其反應條件具較高壓力、溫度且供氧充足及槽密閉性高、反應時間短可將有機物完全分解無二次污染,有機廢水在超臨界水狀態下可達到減廢減毒、完全礦化的效果,氧化分解後之產物為二氧化碳、水和無機鹽類,目前已普遍應用於高濃度有機廢水除污技術。
研究主要探討以連續式超臨界水氧化對二甲胺(Dimethylamine)廢水去除效率。濃度為8%(v/v)二甲胺廢水在未添加醇類超臨界水溫度反應條件下,TOC去除率僅49%,主要是二甲胺燃點溫度高,因此在未達燃點溫度的超臨界水氧化條件下,其TOC去除率低;然而醇類化合物如乙醇具高焓(Enthalpy)值又較二甲胺燃點低的優越特性在超臨界水中燃燒可釋放較多熱值,實驗結果顯示乙醇濃度為4%與6%(v/v)的超臨界水氧化條件下,TOC去除率皆可達99.9%。此外實驗證實少量乙醇添加可提供穩定的熱值給反應槽,本研究驗證以少量高熱值醇類添加作為輔助燃料在超臨界水氧化可有效分解燃點高之有機物質。在添加少量乙醇於二甲胺廢水中,乙醇:二甲胺(v/v)為1:5及1:2.5之實驗結果,發現在1:2.5的濃度設定及反應溫度為390℃,二甲胺TOC去除率可高達99.0%,與未添加乙醇相比較TOC去除率大幅度提升50%。本研究證實添加高熱值醇類可以有效提升難分解有機物之去除率。
Continuous supercritical water oxidation (SCWO) is a highly efficient organic wastewater treatment technology. Using water as a reaction medium with sufficient oxygen supply organic pollutants rapidly decomposed as the temperature and pressure higher than supercritical condition(Tc≥374℃, Pc≥218atm). The main difference between continuous supercritical water oxidation technology and traditional wet oxidation is the more effective way to treat the organic wastewater containing high total organic carbon (TOC). With high sealed reactor, short processing time, and the organic compounds decompose completely without secondary pollution. Organic waste under the supercritical water condition can be attenuated to achieve waste reduction. The organics were completely mineralized, after oxidation, and decomposition products were carbon dioxide, water, and inorganic salts. The SCWO commonly used for the removal of high concentration organic wastewater.
The main objective of this study is to investigate the efficiency of waste water removal for dimethylamine in continuous SCWO. Concentration of 8% (V/V) dimethylamine water without adding alcohol in supercritical water reaction, The TOC removal was of only 49%, mainly dimethylamine ignition temperature is high, and therefore below the ignition temperature supercritical water oxidation conditions, the TOC removal was low, but alcohols such as ethanol, a high enthalpy solvent when compared with dimethylamine. Alcohol has excellent characteristics in supercritical water combustion. It can release much more heat. Experimental results show that ethanol concentration of 4% and 6% (V/V), TOC removal rate were 99.9%. By adding small amount of alcohol in the dimethylamine contained waste water (i.e.) ethanol: decomposition 1:5, and 1:2.5 (V/V) for the experimental, Our results found that the concentration of 1:2.5 and the reaction temperature was set 663K, TOC of dimethylamine removal reached 99.0%, which compared with no ethanol added. The TOC removal enhances more than 50%. This study confirms the adding of alcohol can raise the heat and enhance the decomposition removal efficiency of dimethylamine contained waste water.
中文摘要...................................................Ⅰ
英文摘要...................................................Ⅱ
目錄......................................................Ⅲ
表目錄....................................................Ⅴ
圖目錄....................................................ⅤⅠ
第一章 緒論................................................1
1.1 研究緣起...............................................1
1.2 研究目的...............................................2
1.3 研究內容................................................3
第二章文獻回顧..............................................4
2.1 超臨界流體..............................................4
2.1.1 超臨界流體之定義.......................................4
2.1.2 超臨界水與水的性質.....................................5
2.1.3 超臨界流體之應用.......................................7
2.2 超臨界水................................................9
2.2.1 超臨界水之定義.........................................9
2.2.2 超臨界水之性質與特性...................................10
2.2.3 超臨界水氧化技術之影響因子..............................15
2.2.4 超臨界水氧化、焚化、濕式氧化及生物處理比較.................18
2.3 超臨界水氧化技術之發展、應用與面臨之難題.....................21
2.3.1 超臨界水氧化技術之發展..................................21
2.3.2 超臨界水氧化技術之應用..................................22
2.3.3 超臨界水氧化技術面臨之難題..............................24
2.4 二甲胺之文獻回顧........................................26
2.4.1 二甲胺、乙醇與異丁醇之物理化學性質........................26
2.4.2 危害性...............................................27
2.4.3 對人體之毒性..........................................28
2.4.4 貯存要求.............................................28
2.4.5 主要用途.............................................28
2.4.6 處理方法.............................................29
1.孔黎明、劉曉勤,「CuO/A1203催化濕式過氧化水溶液中苯酚」,化工進展,第25卷,第10期(2006)。
2.司洪濤、呂冠霖、黃香玫,「氧化技術在高濃度COD廢水處理之應用」,財團法人台灣產業服務基金會。
3.陳旭東、李朝霞,「高濃度有機廢水處理技術研究發展」,河北化工,環保與安全,第31卷,第12期(2008)。
4.邵瑞華、司全印、房平,「超臨界水氧化處理廢水研究進展」,淨水技術,第28卷,第5期(2009)。
5.桂椿雄,「超臨界流體萃取法之簡介」,化學月刊,第五十六卷,第四期(1998)。
6.談駿嵩,「超臨界流體的應用」,科學發展月刊,第359期(2002)。
7.張學明、杜子邦、黃功勛,「超臨界流體技術於生醫材料中之應用」,化工技術,第11期(2007)。
8.陳政群,「超臨界流體 supercritical fluids」,工研院環安中心。
9.「台灣超臨界流體協會電子報」第38-47期(2009)。
10.G. Jizhi, Y. Kang, “A Review of Reactions under Supercritical Condition,” Journal of Supercritical Fluids, Vol.50(2009).
11.D. Huang, S. Daehling, K. Carleson, T.E. Taylor, P. Wai, C. Propp, “Thermodynamic Analysis of Corrosion of Iron Alloys in Supercritical Water,” J. Am. Chem. Soc., Vol.3(1989).
12.陳文卿、金順志,「超臨界流體氧化技術之應用」,環保月刊,第2卷,第9期(2002)。
13.鄭義榮,「低介電常數材料之研究及其在深次微米金屬半導體積體電路之製程整合之研究」,國立交通大學材料科學與工程系所,博士論文(2004)。
14.馬寧元,「超臨界流體工業應用面面觀」,金屬工業研究發展中心。
15.E. Gloyna, F.L. Li, ‘‘Supercritical water oxidation research and development update,’’ Environ. Progr., Vol.14(1995).
16.C.R. Reid, J.M. Prausnitz, T.K. Sherwood, "The properties of gases and liquids," Third edition, McGraw-Hill Book Company(1977).
17.崔克清,「安全工程大辭典」,化學工業出版社出版(1995)。
18.M.J. Cocero, E. Alonso, R. Torı’o, D. Vallelado, T. Sanz, F. Polanco, “Supercritical Water Oxidation (SCWO) for Poly(ethylene terephthalate) (PET) Industry Effluents,” Ind. Eng. Chem. Res., Vol.39(2000).
19.“Standard Test Method for Auto ignition Temperature of Liquid Chemicals,” ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.
20.M.D. Bermejo, P. Cabeza, M. Bahr, R. Fernandez, V. Rios, C. Jimenez, M.J. Cocero, “Experimental study of hydrothermal flames initiation using different static mixer configurations, ” Journal of Supercritical Fluids, Vol.50(2009).
21.B. Wellig, M. Weber, K. Lieball, K. Prikopsky, Ph. Rudolf von Rohr “Hydrothermal methanol diffusion flame as internal heat source in a SCWO reactor,” Journal of Supercritical Fluids, Vol.49(2009).
22.M. Serikawa, T. Usui, T. Nishimura, H. Sato, S. Hamada, H. Sekino, “Hydrothermal flames in supercritical water oxidation: investigation in a pilot scale continuous reactor,” Fuel, Vol.81(2002).
23.K. Hirosaka, M. Fukayama, K. Wakamatsu, “Combustion of ethanol by hydrothermal oxidation,” Proceedings of the Combustion Institute, Vol.31(2007).
24.B. Wellig, “Transpiring Wall Reactor for Supercritical Water Oxidation,” Technische Wissenschaften ETH Zurich, Vol.15038(2003).
25.C. Narayanana, C. Frouzakis, K. Boulouchos, K. Prı’kopsky’, B.Wellig, P. Rudolf von Rohr, “Numerical modelling of a supercritical water oxidation reactor containing a hydrothermal flame,” Journal of Supercritical Fluids, Vol.46(2008).
26.樓基中,「有機毒物之焚化及二次污染控制」,環境毒物,第302期(1995)。
27.D. Hubert, N. F. Jean, “Wet air oxidation for the treatment of industrial wastes,” Waste Management, Vol.20(2000).
28.B. Cui, F. Cui, G. Jing, S. Xu, W. Huo, S. Liu, “Oxidation of oily sludge in supercritical water, a School of Municipal & Environmental Engineering,” Journal of Hazardous Materials, Vol.47(2008).
29.Z. Fang, S.K. Xu, R.L. Smith Jr., K. Arai, J.A. Kozinski, “Destruction of deca-chlorobiphenyl in supercritical water under oxidizing conditions with and without Na2CO3,” Journal of Supercritical Fluids, Vol.33(2005).
30.G. Anitescu, L. L. Tavlarides, ‘‘Supercritical water oxidation reaction pathway and kinetics of polychlorinated biphenyls,’’ Proceedings of the 2001 conference on environmental research(2001).
31.P. A. Marrone, M. Hodes, K.A. Smith, J.W. Tester, “Salt precipitation and scale control in supercritical water oxidation-part B: commercial/full-scale applications,” Journal of Supercritical Fluids, Vol.29(2004)。
32.M.D. Bermejo, M.J. Cocero, “Supercritical Water Oxidation: A Technical Review,” Ind. Eng. Chem. Res., Vol.44(2005).
33.V. Bambang, K. Jae-Duck, “Supercritical water oxidation for the destruction of toxic organic wastewaters: A review,” Journal of Environmental Sciences, Vol.19(2007).
34.昝元峰、王樹眾、段百齊、沈林華、林宗虎,「超臨界水氧化技術的研究進展」,石油化工,第33卷,第2期(2004)。
35.錢勝華、張敏華、董秀芹、江浩錫,「影響超臨界水氧化技術工業化的原因與對策」,化學工業與工程,第25卷,第5期(2008)。
36.S. Qian, M. Zhang, X. Dong, H. Jiang, “Reasons for Hindering an Industrial Application of Supercritical Water Oxidation and Possible Solutions,” Journal of Supercritical Fluids, Vol.47(2009).
37.D.R. Corbin, S. Schwarz, G.C. Sonnichsen, “Methylamines synthesis: A review,” Catalysis Today, Vol.37, No.2(1997).
38.B.V. Gysel, W. Musin, “Methylamines,” Journal Forensic Sci., Vol. 50, No.5(2005).
39.K.M. Benjamin, P.E. Savage, “Supercritical Water Oxidation of Methylamine,” Ind. Eng. Chem. Res., Vol.44, No.14(2005).
40.S.A. Levichev, V.F. Plekhotkin, “Dimethylamine removal from wastewaters,” Zh. Prikl. Khim., Vol.46(1973).
41.原丁,「氮肥工業中氨氮廢水治理技術進展」,化工環保,第15卷,第2期(1995)。
42.G.M. LahavO, “Ammonium Removal from Primary and Secondary Effluents Using a Bioregenerated Ion-exchange Process,” War Sci. Tech., Vol.142(2000).
43.Q.W. Li, D.L. Dai, Y. Yi, “Development of Complexation Extraction Technologies for Organic Wastewater Treatment,” Journal Chem. Eng. Data, Vol.48(2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top