跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/14 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡秀庭
研究生(外文):Jian, Xiu-Ting
論文名稱:應用葉片元素動量法於螺槳與洋流渦輪機的受力計算
論文名稱(外文):Applying the Blade Element Momentum Theory to the Computations of Propeller and Current Turbine Forces
指導教授:辛敬業辛敬業引用關係
指導教授(外文):Hsin, Ching-Yeh
口試委員:黃正利林正文陳柏汎王勝堯辛敬業
口試委員(外文):Huang, Zheng-LiLin,Zheng-WenChen,Bo-FanWang,SHENG-YAOHsin, Ching-Yeh
口試日期:2016-07-07
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:79
中文關鍵詞:螺槳洋流渦輪機動量理論葉片元素法葉片元素動量法RANS
外文關鍵詞:propellercurrent turbinemomentum theoryblade element methodblade element momentum theoryRANS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
船用螺槳與洋流渦輪機若應用於黏性流方法進行計算,通常需要耗費較長的
計算時間,尚且還牽涉到網格生成,計算條件設定等等問題,本論文的目的即是
發展一有效率且實用的方法,可以計算螺槳與洋流渦輪機的性能,在未來且可以
應用於在大攻角時的受力,而葉片元素動量法是我們所選擇的方法。葉片元素動
量理論本身為一發展成熟之理論,且已廣泛被應用於風車性能的計算,但對於螺
槳而言,由於螺槳葉片幾何具有較大的面積比,相較於風車之細長型葉片,其三
維效應較強烈,加上所使用之翼型升阻力缺乏一套完整的資料,因此較少人將葉
片元素法應用於螺槳性能計算。本論文一方面推導螺槳之葉片元素動量法理論,
同時也推導洋流渦輪機之理論,我們花費了相當多的時間應用黏性流RANS 方
法建立Modified NACA66 與a = 0.8 拱高翼型的升阻力資料庫。其困難處首先在
於當應用到船用螺槳與洋流渦輪機,計算往往牽涉許多不同厚度,不同拱高的翼
型,建立資料庫需要能夠完整涵蓋這些幾何。其次大攻角與負攻角的計算更是二
維翼型受力計算的挑戰。升阻力資料的不正確會影響葉片元素動量法所計算的結
果之準確性,本論文中應用此資料庫,透過十顆不同螺槳幾何之正車計算,以探
討此資料庫的可信度與缺點所在之處。論文中我們將十顆螺槳的葉片元素動量法
計算值與實驗值進行比較,為了瞭解其誤差,我們將計算值與實驗值之誤差所需
要的修正倍數(係數)進行反算,發現在螺槳正車時,其升力項之修正係數幾乎接
近常數1 倍,表示二維翼型升力的計算較為準確。然而,阻力項之修正係數則不
接近常數1 倍,表示二維翼型阻力計算具有較大的誤差,需要進行更準確的計算。
我們也發現葉片元素法對於單一葉片的面積比較為敏感,表示當螺槳單一葉片面
積比太大時,葉片元素動量法計算的準確度會受到影響。最後,應用此方法於洋
流渦輪機的計算,獲得相同的結論,在大部份的葉尖速度比下,獲得可以接受的
計算結果。
It is time consuming and complicated to simulate the propeller and current
turbine performances by viscous flow RANS method. The objective of this thesis is to
develop an efficient and applicable method for the computations of propeller and
current turbine performance, and later can be extended to the cases of large angles of
attack. The blade element momentum theory (BEMT) is selected as the method in this
thesis. The BEMT has been developed for some time, and it is widely used to the
evaluation of wind turbine performance. The BEMT is seldom used in evaluating
marine propeller performance, and one of the reason is that they usually have stronger
three-dimensional effects due to larger area ratios. Also it is not easy to find a
complete database of the lift and drag coefficients of two dimensional foils used on
propellers. In this thesis, we have first derived formulations of BEMT for both marine
propellers and current turbines, and we then spent a lot of time to establish a lift and
drag database for modified NACA66 and a=0.8 mean-line sections by using RANS
method. The difficulties of establishing this database are first the variations of
thickness and camber ratio on propeller and current turbine geometries, and secondly
the accurate computations of forces at larger angles of attack. The accuracy of this
database directly determine the accuracy of BEMT. In order to understand and
investigate the accuracy of our database and BEMT, we have applied the BEMT to the
computations of 10 different propeller geometries, and the BEMT results are
compared to experimental data. “Correction factors” are defined for both the lift and
drag forces, and it is found that the correction factors of the lift are mostly 1 for these
10 propellers, which means the lift coefficients are computed quite accurately. On the
other hand, it is not true for drag coefficient computations. The accuracy of drag
coefficients has to be improved. It is also found that the BEMT is sensitive to the
single blade area ratio, and it is not accurate for propellers with large single blade area
ratios. Finally, we have applied BEMT to the computations of current turbine, and
similar conclusions are obtained as for the marine propellers. The presented BEMT is
feasible for marine propellers and current turbine in forward conditions; however,
more efforts are necessary for improving the database accuracies, especially at large
angles of attack.
摘要 I
Abstract II
目錄 III
表目錄 IV
圖目錄 V
第1章 緒論 1
1.1 引言 1
1.2 文獻回顧 1
第2章 理論與方法 4
2.1 螺槳葉片元素動量理論 4
2.1.1 線動量理論 4
2.1.2 角動量理論 6
2.1.3 葉片元素理論 7
2.1.4 葉片元素動量理論 7
2.1.5 葉尖損失修正理論 8
2.2 洋流渦輪機葉片元素動量理論 9
2.2.1 線動量理論 9
2.2.2 角動量理論 12
2.2.3 葉片元素理論 12
2.2.4 葉片元素動量理論 13
2.2.5 葉尖損失修正理論 14
第3章 計算方法與驗證 20
3.1 計算方法 20
3.1.1 螺槳受力計算步驟 21
3.1.2 洋流渦輪機計算步驟 21
3.2 二維翼型應用RANS計算之應用 22
3.3 Modified NACA66與a = 0.8二維翼型升阻力係數之計算 26
第4章 計算結果與分析 37
4.1 螺槳受力計算 37
4.2 螺槳葉片元素動量法計算結果分析與探討 38
4.3 洋流渦輪機葉片元素動量法之計算結果 39
第5章 結論與展望 76
參考文獻 78


[1] Rankine,W.J. “On the mechanical principles of the action of propellers.” Trans. RINA, 6, 1865.
[2] Froude, R.E. “On the part played in the operation of propulsion differences in fluid pressure.” Trans. RINA, 30, 1889.
[3] Froude, W. “On the elementary relation between pitch, slip and propulsive efficiency.” Trans. RINA, 19, 1878.
[4] Burrill, L.C. “Calculation of marine propeller performance characteristics.” Trans. NECIES, 60, 1944.
[5] Benini, E., “Significance of blade element theory in performance prediction of marine propellers”. Ocean Engineering (June 2004), 31 (8-9), pg. 957-974
[6] Prandtl, L. 1921. “Application of Modern Hydrodynamics to aeronautics.” Natl. Advis. Comm. Aeronaut. Ann,. Rep., 7th, pp.157-215
[7] Betz, A. Ergebn. aerodyn. Vers. Anst. Gottingen, 1919.
[8] Goldstein, S. “On the vortex theory of screw propellers.” Proc. Royal Soc., Ser. A, 123, 1929.
[9] Lerbs, H.W. “Moderately loaded propellers with a finite number of blades and an arbitrary distribution of circulation.” Trans. SNAME, 60, 1952.
[10] Brockett, T.E. “Lifting surface hydrodynamics for design of rotating blades.” Propellers ’81 Symp. SNAME, 1981.
[11] Greeley, D.A., Kerwin, J.E. “Numerical methods for propeller design and analysis in steady flow.” Trans. SNAME, 90, 1982
[12] Kerwin, J.E.A “Deformed Wake Model for Marine Propellers.” Department of Ocean Engineering Rep. 76-6, MIT, 1976
[13] Shen, Y., Fuhs, D., “Blade section lift coefficients for propellers at extreme off-design conditions”, CRDKNSWC/HD-1205-02, December 1997
[14] Stuart Jessup, S., Chesnakas, C., Fry, D., Donnelly, M., Black, S. and Park, J., “Propeller Performance at Extreme Off Design Conditions”, 25th Symposium on Naval Hydrodynamics, St. John’s, Newfoundland and Labrador, CANADA, 8-13 August 2004
[15] Barnsley, M.J., Wellicome,J.F., 1993. “Dynamic models of wind turbines aerodynamic model development,” Final Report on contract JOUR0110 for the Commission of the European Communities Directorate-General XII Science. Research and Development.
[16] Win, YN, Tokgoz, E, Wu, PC, Stern, F and Toda, Y (2013). “Computation of Propeller-Hull Interaction using Simple Body-Force Distribution Model around Series 60 CB = 0.6,” Journal of Japan Association of Naval Architects and Ocean Engineers (JASNAOE),Vol. 18, pp. 17-27.
[17] Tokgoz, E, Win, YN, Kuroda, K. and Toda, Y (2012) “A New Method to Predict the Propeller Body Force Distribution for Modeling the Propeller in Viscous CFD Code without Potential Flow Code,” 2nd East Asia International Student Symposium on Maritime Sciences, Kobe, Japan, Vol. 4, pp. 20-24.
[18] Bahaj, A.S., Molland , A.F., Chaplin , J.R., Batten , W.M.J., “Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank”, University of Southampton, UK, 2006
[19] 洪秀琴,“應用黏性流計算於風車葉片流場分析”,碩士論文,國立臺灣海洋大學,2006
[20] 曾益慧,“應用體積力分析風力發電機葉片流場”,碩士論文,國立臺灣海洋大學,2012
[21] 柯淳,“應用體積力方法計算水平軸風車於非定常流之流場”,碩士論文,國立臺灣海洋大學,2013

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top